共查询到10条相似文献,搜索用时 15 毫秒
1.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。 相似文献
2.
《环境科学与技术》2017,(8)
随着中国城市发展,城镇化进程的不断推进,能源消耗持续增加,空气中的污染物含量越来越高,空气污染事件频发,城市空气质量研究成为一个热点议题。PM_(2.5)作为表征空气质量的重要指标之一,越来越受到人们的关注,目前获取PM_(2.5)数据主要有地面监测和卫星遥感监测2种方式。传统的地面监测手段可以得到高精度的局部PM_(2.5)污染数据,但是由于其覆盖范围的局限性,并没有办法反映出整个区域的PM_(2.5)污染情况。遥感卫星监测恰到好处地弥补了这一缺陷,其中应用最为广泛的是使用卫星遥感数据产品大气气溶胶光学厚度AOD来反演地面的PM_(2.5)浓度。文章从AOD数据的多样性及其应用、反演地面PM_(2.5)浓度模型的选择以及反演模型的优化这3个方面对目前国内外利用遥感卫星AOD数据反演地面PM_(2.5)浓度的研究进行了归纳梳理。其中AOD数据分辨率的不同产生了不同精度的反演结果;而线性回归模型和非线性回归模型的反演精度也存在较为明显的差异;通过在模型中加入气象参数、气溶胶垂直分布特性以及地表信息等因素会显著地改善反演结果。上述研究为流行病学中PM_(2.5)人口暴露研究及健康影响提供方法论基础。 相似文献
3.
《环境科学与技术》2016,(7)
PM_(2.5)作为大气污染的一种,正受到社会越来越广泛的关注和研究,但大部分研究仅单独分析各样点PM_(2.5)浓度时间维度或空间维度特征,忽略了PM_(2.5)的时空维度变化。为综合考虑PM_(2.5)时空维度特征,该文以山东省2014年PM_(2.5)浓度监测数据为对象,建立PM_(2.5)时空变异模型,利用时空克里格法对山东省全年PM_(2.5)浓度进行时空预测,得到时空分布立方体数据,最后基于该数据,对山东省PM_(2.5)污染特征作出分析。结果表明,2014年山东省整体PM_(2.5)污染严重。在空间上,中西部地区PM_(2.5)浓度超过75μg/m~3的天数超过290 d,存在持续性高危污染,东部小于37.5μg/m~3的天数超过146 d,存在间歇性轻微污染,且从西至东,PM_(2.5)污染天数和程度逐渐降低,具有明显地域性污染特征;在时间上,PM_(2.5)浓度最高时间段为1、2、11和12月,最低为6-8月,各季节污染程度依次为:冬季秋季春季夏季。研究表明时空地统计方法能够有效地对空气质量进行时空预测,是挖掘更多的时空分布特征和信息,进行环境数据分析的有效手段。 相似文献
4.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。 相似文献
5.
PM_(10)和PM_(2.5)是近年来乌鲁木齐市空气质量的首要污染物,其成分复杂,来源不清。采用扫描电镜和离子色谱研究了乌鲁木齐市2015年采暖期和非采暖期大气颗粒物PM_(10)和PM_(2.5)的显微形貌,元素组成及其水溶性离子特征,并采用主成分分析法(PCA)对其来源进行解析。结果表明:PM_(10)和PM_(2.5)的颗粒形态各异,以球状、团絮状形状居多。主要物质有硅铝酸盐颗粒、铁氧化物颗粒,硫酸/碳酸盐晶体,碳质气溶胶以及不明物质等。采暖期和非采暖期主要的无机水溶性离子分别是SO_4~(2-)、NH_4~+、NO_3~-、Cl~-和SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)。推测乌鲁木齐市颗粒物污染主要来源于固定污染源。 相似文献
6.
7.
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈\"双峰双谷型\"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。 相似文献
8.
针对目前空气质量统计预报方法存在的主要缺陷,本文提出了距离相关系数和支持向量机回归相结合的统计预报方案DC-SVR.利用淮安市2013年1—12月PM_(2.5)观测资料和常规气象观测资料,首先在选入预报当日气象要素的基础上,增加选取前期污染物和气象要素作为预报因子,再采用距离相关系数分季节从预报因子中筛选出重要预报因子,最后采用支持向量机回归对PM_(2.5)浓度值进行逐日滚动统计预报.研究发现,淮安地区气温和气压对PM_(2.5)的距离相关性要高于其他气象要素,夏秋季PM_(2.5)与气象要素的距离相关性较春冬季好.基于距离相关系数和支持向量机回归建立DC-SVR模型,PM_(2.5)的试预报值和实测值的全年相关系数高达0.76,平均偏差仅为1.13μg·m~(-3),平均绝对误差为23.47μg·m~(-3).通过与支持向量机回归、人工神经网络的统计预报效果对比,DC-SVR模型有效降低预报因子维数且能自适应选取最佳参数,预报精度显著优于其他3种统计预报方案,可为业务化预报提供参考. 相似文献
9.
《环境科学与技术》2016,(7)
该研究选取北京大兴南海子公园植被区与亦庄非植被区PM_(2.5)数据进行研究,对比分析植被区与非植被区PM_(2.5)质量浓度日变化、月变化和年变化特征,典型天气下的PM_(2.5)质量浓度变化。结果表明:植被区PM_(2.5)质量浓度整体上低于非植被区,二者日变化均呈典型的双峰曲线,白天低,夜间高,最小值出现在下午15:00左右;从不同月份看,PM_(2.5)质量浓度最高值出现在冬季的1月、2月,最低值出现在6月、8月,整体表现为冬季月份明显高于其余月份;气温、降雨和大风均与PM_(2.5)浓度呈负相关,晴天时,温度较高,有利于PM_(2.5)浓度降低;降雨有利于空气颗粒物沉降,有效清除大气PM_(2.5)污染,降低其浓度;大风天气会增加大气环流,有助于颗粒物在大气中扩散,使PM_(2.5)不易滞留,从而导致浓度降低。降雨和大风均能导致PM_(2.5)污染降低,且城市森林植被对于PM_(2.5)有明显降低作用。 相似文献
10.
《环境科学与技术》2017,(12)
为研究南京市典型交通源冬季PM_(2.5)的污染特性,于2016年1月9日到2月4日在南京市四平路采集了大气中PM_(2.5)样品,分析了样品中的重金属元素、水溶性离子、有机碳和元素碳的浓度。结果表明,采样期间南京市大气PM_(2.5)中日平均质量浓度为85.3μg/m~3。重金属元素锌(Zn)的浓度最高,其次是铅(Pb)和锰(Mn)的元素浓度,平均浓度分别为104.72 ng/m~3、60.88 ng/m~3,再者是钡(Ba)和铜(Cu)的元素浓度,平均浓度分别为30.23 ng/m~3、45.26 ng/m~3。样品中水溶性离子的平均质量浓度水平为:NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Mg~(2+)Ca~(2+),其中NO_3~-、SO_4~(2-)和NH_4~+的质量浓度均在10μg/m~3以上,是水溶性离子的主要组分,分别占总离子浓度的37.18%、29.34%、17.42%。 相似文献