首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Coagulation–ultrafiltration(C–UF) is widely used for surface water treatment. With the removal of pollutants, the characteristics of organic matter change and affect the final treatment efficiency and the development of membrane fouling. In this study, we built a dynamic C–UF set-up to carry out the treatment of micro-polluted surface water, to investigate the characteristics of dissolved organic matter from different units. The influences of poly aluminum chloride and poly dimethyldiallylammonium chloride(PDMDAAC) on removal efficiency and membrane fouling were also investigated. Results showed that the dosage of PDMDAAC evidently increased the UV254 and dissolved organic carbon removal efficiencies,and thereby alleviated membrane fouling in the C–UF process. Most hydrophobic bases(HoB)and hydrophobic neutral fractions could be removed by coagulation. Similarly, UF was good at removing HoB compared to hydrophilic substances(HiS) and hydrophobic acid(HoA)fractions. HiS and HoA fractions with low molecule weight accumulated on the surface of the membrane, causing the increase of transmembrane pressure(TMP). Membrane fouling was mainly caused by a removable cake layer, and mechanical cleaning was an efficient way to decrease the TMP.  相似文献   

2.
Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration (DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.0 × 1013 m− 1 in the first 70 hr before a jump occurred. Furthermore, the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand (COD) concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation.  相似文献   

3.
Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration(DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.0 × 1013m~(-1) in the first 70 hr before a jump occurred. Furthermore,the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand(COD)concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation.  相似文献   

4.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

5.
煤化工废水反渗透处理系统的运行效果及膜污染分析   总被引:1,自引:0,他引:1  
针对煤化工废水反渗透(RO)膜处理系统夏季严重污堵的问题,本研究以实际某煤化工污水处理厂一级两段式RO系统为考察对象,分析了系统运行效能及膜污染特征.研究发现,生化段稳定地实现了有机物的削减,离子交换树脂进一步保障了产水的脱盐率,促进实现高水回收率,是煤化工废水零排放的重要保障.但对膜系统而言,脱盐及有机物去除的主要负荷集中在RO过程,一段/二段RO脱盐率分别为94.16%和96.16%,COD去除率分别为68.12%和87.4%;相对进水,一段RO有机物浓缩了9倍,二段RO盐浓缩了5倍.因此,两段膜过程都出现显著的膜污染,一段RO以有机-微生物-硅污染为主,形成致密的污染层,由进口到出口逐渐增厚,主要为蛋白质、多糖、腐殖酸;二段RO以Ca、Mg等的无机结垢为主,污染层结构相对松散,由进口到出口片状结晶逐渐增大.因此,预处理工艺的稳定运行及对污染物的去除以减轻RO过程的污染负荷是膜污染控制的关键;同时,针对RO系统中膜污染分布特征,制定杀菌、阻垢和化学清洗等膜污染控制策略以防止形成微生物抗性及"清洗剂抗性"具有重要意义.  相似文献   

6.
7.
分别采用分子量分级膜和XAD-8树脂,研究了污水厂二级出水中有机物分子量分布特征及不同分子量分布区间亲疏水有机物的相对含量,考察了分子量分布及亲疏水特性对纳滤膜透水性能的影响.结果表明,二级出水有机物中,小分子亲水性有机物含量最高,小于2k的有机物占总有机物含量的45.61%,其中亲水性物质占28.07%,疏水性物质占17.54%;不同特征的原水分别经纳滤膜过滤,分子量分布对膜污染影响较大,分子量小于30k时,分子量区间越小,比通量衰减越快,分子量大于30k时,分子量区间越大,比通量衰减越快,且分子量较小的有机物通量衰减程度大于分子量较大有机物;在分子量分布相同区间内,亲水性有机物的比通量衰减较慢,说明相同分子量时,膜对亲水性物质的截留率较低,而疏水性物质是引起膜通量衰减的主要原因.  相似文献   

8.
Aerobic granular sludge was cultivated adopting internal-circulate sequencing batch airlift reactor.The contradistinctive experiment about short-term membrane fouling between aerobic granular sludge system and activated sludge system were investigated.The membrane foulants was also characterized by Fourier transform infrared(FTIR)spectroscopy technique.The results showed that the aerobic granular sludge had excellent denitrification ability;the removal efficiency of TN could reach 90%.The aerobic granular sludge could alleviate membrane fouling effectively.The steady membrane flux of aerobic granular sludge was twice as much as that of activated sludge system.In addition,it was found that the aerobic granular sludge could result in severe membrane pore-blocking, however,the activated sludge could cause severe cake fouling.The major components of the foulants were identified as comprising of proteins and polysaccharide materials.  相似文献   

9.
为了考察缺氧滤池-膜生物反应器(AF-MBR)对海水养殖废水的处理效果,在膜生物反应器中投加聚氨酯悬浮性填料,并以独立运行的膜生物反应器作为对照.结果表明,组合反应系统的总氮去除率和总有机碳(TOC)去除率分别为92%和90%,高于对照膜生物反应器的86%和85%.并且,前置缺氧滤池和填料的投加也明显缓解了膜污染.通过对两个反应器提取的溶解性微生物产物(SMP)和细胞胞外聚合物(EPS)进行红外光谱和三维荧光光谱的测定,确定了蛋白质和多糖为主要的膜污染物质,并且膜污染物质的减少缓解了膜污染现象.  相似文献   

10.
SRT对UCT-MBR反硝化除磷性能与膜污染行为的影响   总被引:2,自引:0,他引:2  
采用脱氮除磷膜生物反应器(UCT-MBR)工艺处理冀南地区城市污水,考察了SRT对UCT-MBR工艺反硝化除磷性能与膜污染行为的影响.结果表明:较短(15d)与较长(40d)SRT均不利于反硝化聚磷菌(DPAOs)的富集;SRT控制在25d时系统的反硝化除磷性能得到最大程度强化,反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的数量比例及缺氧除磷率达到最大值,分别稳定在50.9%和88%,并且此时系统总磷(TP)、总氮(TN)去除率也达到最大值91.7%、73.6%,出水浓度分别稳定在0.48, 13.3mg/L左右;SRT对系统COD、氨氮(NH4+-N)的去除效能影响不大,COD、NH4+-N平均去除率分别为89.8%、99.7%,出水浓度分别稳定在30.8, 0.15mg/L;随着SRT的延长,膜池混合液固体(MLSS)浓度升高,分子量大于100kDa、小于1kDa的溶解性微生物代谢产物(SMP)浓度和胞外聚合物(EPS)比污泥浓度升高及污泥粒径(PSD)减小,是导致膜池污泥可滤性变差的主要原因,从而致使系统膜渗透性加速降低、持续运行周期缩短,而红外光谱(FT-IR)分析表明SRT对膜污染物质的组成无显著影响,光谱折射率与SMP、EPS含量呈现一致性.  相似文献   

11.
Dissolved organic nitrogen (DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products (N-DBPs). This work was designed to explore the transformation and fate of DON and dissolved inorganic nitrogen (DIN) in drinking water treatment. The changes of DON and formation of N-DBPs were evaluated along the water treatment route (i.e., pre-ozonation and biological-contact oxidation, delivery pipes’ transportation, coagulation-sedimentation, sand filtration, post-ozonation, biological activated carbon, ultrafiltration and disinfection) of drinking water treatment plant (DWTP). The transformation mechanism of DON was comprehensively investigated by molecular weight fractionation, three-dimensional fluorescence, LC-OCD (Liquid Chromatography-Organic Carbon Detection), total free amino acids. A detailed comparison was made between concentrations and variations of DON and DIN affected by seasons in the drinking water treatment. Regardless of seasonal variation in raw water concentration, the DON removal trends between different treatment processes remain constant in the present study. Compared to other treatment processes, pre-ozonation and coagulation-sedimentation exhibited the dominant DON removal in different seasons, i.e., 11.13%-14.45% and 14.98%-22.49%, respectively. Contrary, biological-contact oxidation and biological activated carbon negatively impacted the DON removal, in which DON increased by 1.76%-6.49% in biological activated carbon. This may be due to the release of soluble microbial products (SMPs) from bacterial metabolism, which was further validated by the rise of biopolymers in LC-OCD.  相似文献   

12.
构建了移动床生物膜反应器(MBBR)-膜生物反应器(MBR)组合工艺处理生活污水,考察了其对污染物的去除效果和膜污染情况。结果表明,MBBR-MBR对$NH_{4}^{+}$-N和COD的去除率均能达到97%以上。MBR中跨膜压随运行时间延长呈先慢速增加后快速增加的特点,活性污泥微生物胞外聚合物(EPS)和微生物代谢产物(SMP)是膜污染的重要物质,普通的化学清洗并不能使MBR膜组件恢复到新膜的水平,膜污染呈不可逆性。EPS的表观分子量分布较广泛,而SMP的表观分子量呈单峰特征,主要以小分子量物质为主。  相似文献   

13.
以东海原甲藻分泌的藻类有机物(AOM)为研究对象,研究粉末活性炭预沉积和预吸附两种膜前预处理手段对海水中AOM的去除作用,对比分析AOM直接超滤、预沉积和预吸附后再超滤时膜通量、膜阻力分布、膜表面亲疏水性和粗糙度的变化,探讨粉末活性炭孔隙结构、沉积量对AOM去除效果及超滤膜污染的影响.结果表明,活性炭预沉积和预吸附能够提高超滤膜对含AOM海水中DOC和UV254的去除率,预沉积对AOM的去除作用优于预吸附,介孔活性炭较微孔活性炭的预沉积效果更好,当介孔活性炭PAC2的沉积量为0.4g/L时,DOC和UV254的去除率较直接超滤分别提高了25.1%和33.6%.紫外吸收比指数(URI)分析表明,活性炭预沉积和预吸附对有机物的去除作用具有选择性,AOM中芳香族物质较脂肪族羧基类物质更易被除去.粉末活性炭预沉积下AOM超滤时的滤饼层污染阻力(Rc)和膜孔堵塞阻力(Rp)较直接超滤分别降低了39.6%和81.2%,活性炭在超滤膜表面形成的滤饼层结构将AOM与超滤膜进行了隔离,能够减缓膜污染速率,对于控制膜的不可逆污染亦具有重要作用.  相似文献   

14.
Cationic hydrogels have receive d great attention to control eutrophication and recycle phosphate.In this study,a type of La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel(La(OH)3@MMCH) was developed as a potential adsorbent for enhanced phosphate removal from aqueous environment.La(OH)3@MMCH exhibited high adsorption capacity of105.72±5.99 mg P/g,and reached equilibrium within 2 hr.La(OH)3@MMCH could perform effectively in a wide pH range from 3....  相似文献   

15.
DiatomaceoussilicafilteraidfiltrationfortheeffectiveseparationofcolloidalCr(OH)_3precipitatefromtanningwastewaterZhaoYoucai;X...  相似文献   

16.
In this study, a high-efficiency cationic flocculant, P(DAC-MAPTAC-AM), was successfully prepared using UV-induced polymerization technology. The monomer Acrylamide (AM): Acryloxyethyl Trimethyl ammonium chloride (DAC): methacrylamido propyl trimethyl ammonium chloride (MAPTAC) ratio, monomer concentration, photoinitiator concentration, urea content, and cationic monomer DAC:MAPTAC ratio, light time, and power of high-pressure mercury lamp were studied. The characteristic groups, characteristic diffraction peaks, and characteristic proton peaks of P(DAC-MAPTAC-AM) were confirmed by fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), 1H nuclear magnetic resonance spectrometer (1H NMR), and scanning electron microscopy (SEM). The effects of dosage, pH value, and velocity gradient (G) value on the removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol by poly aluminum ferric chloride (PAFC), P(DAC-MAPTAC-AM), and PAFC/P(DAC-MAPTAC-AM) in the flocculation treatment of coal chemical wastewater were investigated. Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM) alone are as follows: dosage of 8–12 mg/L, G value of 100–250 s ? 1, and pH value of 4–8. The optimal dosage of PAFC is 90–150 mg/L with a pH of 2–12. The optimal dosage for PAFC/P(DAC-MAPTAC-AM) is as follows: PAFC dosage of 90–150 mg/L, P(DAC-MAPTAC-AM) dosage of 8–12 mg/L, and pH range of 2–6. When P(DAC-MAPTAC-AM) was used alone, the optimal removal efficiencies of turbidity, COD, ammonia nitrogen, and total phenol were 81.0%, 35.0%, 75.0%, and 80.3%, respectively. PAFC has good tolerance to wastewater pH and good pH buffering. Thus, the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM) compound also exhibits excellent resistance and buffering capacity.  相似文献   

17.
This study evaluated three different dehydrated media for simultaneous detection and enumeration of total coliform (TC) and Escherichia coil in drinking water samples with a standard membrane filtration procedure. The experiment indicated that the differential coliform agar (DCA) medium was the most effective among the tested media in enumerating TC and E. coil, without the need for extensive accompanying confirmation tests. The results for DCA medium were highly reproducible for both TC and E. coil with standard deviation of 6.0 and 6.1, respectively. A high agreement (82%) was found between DCA and m-Endo media on 152 drinking water samples in terms of TC positive. The DCA medium also reduced concealment of background bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号