首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以凹凸棒土为吸附材料,对亚甲基蓝模拟水样进行吸附研究。采用响应面方法(RSM)对吸附工艺进行优化,考察温度、初始pH、吸附剂投加量、染料初始浓度对脱色率的影响,提出采用该工艺的数学模型及优化后的最佳工艺参数。结果表明,各影响因子对脱色率影响显著性顺序为吸附剂投加量 > 初始浓度 > 温度 > 初始pH。优化得到最佳的工艺参数:温度为55℃,pH为3.3,吸附剂投加量为0.15 g,染料初始浓度为100.02 mg·L-1,该条件下对亚甲基蓝模拟水样脱色率可达99.25%,与预测值98.68%接近。因此,建立的模型能真实地反映各主要因素的影响。  相似文献   

2.
硫酸活化市政污泥对亚甲基蓝的吸附   总被引:1,自引:0,他引:1  
采用市政剩余污泥作为原料,以硫酸作为活化剂制备吸附剂,并将其应用到含亚甲基蓝废水处理中。系统地研究了溶液初始pH值、亚甲基蓝初始浓度和吸附时间等因素对硫酸活化市政污泥吸附性能的影响。研究结果表明,在吸附剂投加量2 g/L,pH7.5,温度293 K条件下,硫酸活化市政污泥对亚甲基蓝的最大吸附量为38.4794 mg/g。吸附动力学和热力学研究结果表明,吸附剂对亚甲基蓝的吸附过程可用准二级动力学模型(R2=0.9910)、Freundlich吸附等温式(R2=0.9935)来描述。颗粒内扩散速率也是其吸附反应限制因素,但不是惟一限制因素。该研究表明,硫酸活化剩余污泥可以作为含亚甲基蓝染料废水的处理材料。  相似文献   

3.
利用简青霉菌丝球固定生物炭制得一种新型生物吸附剂,吸附处理亚甲基蓝(MB)和甲基橙(MO)两种染料,考察了接触时间、菌丝球和生物炭用量、pH、染料初始浓度等影响因子对处理效果的影响。结果表明,菌丝球固定生物炭不仅保留了两者的吸附能力,而且易于固液分离。含炭菌丝球对亚甲基蓝的吸附效果优于甲基橙。甲基橙和亚甲基蓝的吸附平衡时间分别为48 h和60 h。亚甲基蓝在碱性条件下的吸附去除效果更好,甲基橙的吸附最适pH范围为5~6。Langmuir等温模型比Freundlich等温模型更适合模拟含炭菌丝球对亚甲基蓝和甲基橙的吸附行为。实验结果可以为微生物和生物炭的联合应用提供科学依据。  相似文献   

4.
垃圾焚烧产生的飞灰处理处置和资源化利用已成为城市可持续发展的新挑战。将飞灰作为亚甲基蓝废水的吸附剂,研究吸附时间、飞灰投加量、亚甲基蓝初始浓度对吸附性能的影响,同时探讨是否有必要对飞灰进行改性。结果表明,无需对飞灰进行水热改性就能达到很好地吸附亚甲基蓝的效果,其吸附机制符合Langmuir模型,为单分子层的均一吸附。单因素实验结果表明,飞灰吸附亚甲基蓝的最佳条件为亚甲基蓝初始质量浓度300mg/L、飞灰投加量2.0g、吸附时间60min,此时亚甲基蓝的去除率可达99.9%。  相似文献   

5.
研究了电炉钢渣改性材料——多元层状双金属氢氧化物(multivariate layered double hydroxide,多元LDHs)对亚甲基蓝染料的脱色性能。考察了亚甲基蓝染料初始质量浓度、吸附时间、吸附温度、pH和吸附剂投加量对吸附亚甲基蓝效果的影响。结果表明,当亚甲基蓝质量浓度为10 mg·L−1、pH为5.0、多元LDHs投加量为40 g·L−1时,多元LDHs对亚甲基蓝的吸附效果最佳,45 min内的去除率可达98.00%,120 min内基本完全去除。X射线衍射(XRD)表征结果表明,利用电炉原钢渣成功制备了多元LDHs;BET测试结果表明,多元LDHs的比表面积及孔容显著优于原钢渣。采用扫描电镜(SEM)和傅里叶变换红外光谱仪(FT-IR)技术对多元LDHs吸附亚甲基蓝前后形态特征以及关键官能团信息进行系统表征,结果表明,亚甲基蓝已成功吸附到多元LDHs上。吸附动力学研究表明,多元LDHs对亚甲基蓝的吸附过程中膜扩散和颗粒内扩散同时发生;吸附等温线拟合结果表明,该吸附过程符合Langmuir吸附等温模型;由热力学参数可知,多元LDHs对亚甲基蓝的去除为自发进行的、放热、以化学吸附为主的过程。以上研究结果可为电炉钢渣的资源化及其在亚甲基蓝废水处理中的应用提供参考。  相似文献   

6.
采用乙醇分散法制备了纳米羟基铁修饰的玉米苞叶和竹笋壳的活性炭复合物(记为nFeOOH@AC),分析了nFeOOH@AC对水样中亚甲基蓝的吸附性能及动力学机理。研究表明,nFeOOH@AC对亚甲基蓝的吸附以化学吸附为主,符合准二级动力学模型。在亚甲基蓝初始质量浓度为3~120 mg/L,体积为50 mL,nFeOOH@AC投加量为10 mg, pH为3~12,吸附时间为1~24 h时,吸附率随着pH升高而增大,随着亚甲基蓝初始浓度的增大先增后减,随着吸附时间的增加而增加。nFeOOH@AC可以作为一种新型环境友好型吸附剂应用于亚甲基蓝废水处理。  相似文献   

7.
Fenton法制备污泥基活性炭及其性能表征   总被引:1,自引:0,他引:1  
污泥基活性炭孔隙率低下是污泥资源化利用的主要制约因素,而Fenton法预处理污泥,可有效改善活性炭性质。通过考察H2O2投加量、H2O2/Fe2+、活化pH以及炭化条件等参数,确定了最佳污泥基活性炭制备条件:H2O2投加量为5%(质量分数),H2O2/Fe2+为5∶1(质量比),活化pH为3,活化时间为2.0h,污泥含固率为1.0%(质量分数),炭化温度为600℃,炭化时间为2.0h,炭化升温速率为10℃/min。此时,得到的污泥基活性炭吸附碘值为340mg/g,比表面积为353.563m2/g,孔容积为0.238cm3/g,微孔容积为0.095cm3/g。该活性炭对阳离子和阴离子染料(亚甲基蓝和甲基橙)具有良好的吸附性能,结果表明,对亚甲基蓝和甲基橙的吸附更符合Langmuir方程,且其饱和吸附量分别为71.53、57.73mg/g。对吸附动力学的拟合结果表明,该吸附更符合二级动力学方程。  相似文献   

8.
磁性花生壳基活性炭对亚甲基蓝的吸附特性   总被引:1,自引:0,他引:1  
以花生壳为原料,在K2CO3和Fe3O4共活化条件下制备了磁性花生壳基活性炭(MPSAC)。通过扫描电子显微镜、氮气吸附脱附等温线、X射线衍射和振动样品磁强计等手段表征了材料的结构和性质,测定了其对亚甲基蓝的吸附特性,考察了初始pH、吸附时间、MPSAC投加量、亚甲基蓝初始浓度和温度对吸附的影响。结果表明:(1)初始pH对亚甲基蓝的吸附影响较小;吸附时间对亚甲基蓝的吸附效率有明显的影响,在120min时吸附达到平衡,吸附过程符合准二级动力学方程。(2)吸附平衡数据更好地符合Langmuir方程,在25、35、45℃下,MPSAC的理论饱和吸附量分别为617.28、617.28、666.67mg/g。(3)热力学参数吉布斯自由能变0J/mol、焓变0J/mol、熵变0J/(mol·K),说明MPSAC对亚甲基蓝的吸附属于熵变增加的自发吸热反应过程。  相似文献   

9.
酸改性泥炭对含亚甲基蓝废水的吸附净化作用   总被引:1,自引:0,他引:1  
采用稀硝酸对泥炭进行改性处理获得酸改性泥炭,并将其用于处理亚甲基蓝废水。考察初始溶液pH、接触时间、酸改性泥炭投加量和亚甲基蓝溶液初始浓度等因素对酸改性泥炭吸附效果影响。结果表明,初始溶液pH、接触时间、酸改性泥炭投加量和亚甲基蓝溶液初始浓度对酸改性泥炭吸附性能都有一定的影响。在最佳的反应条件下(接触时间为60 min,反应温度为35℃,初始溶液pH为7.12,酸改性泥炭投加量为2 g),亚甲基蓝去除率可达90.88%,其吸附较好地符合Freundlich和Langmuir等温方程,拟合相关系数均大于0.9。通过热力学计算发现,ΔG<0、ΔS>0,表明该吸附反应是自发的、吸热反应。且该吸附过程符合准二级动力学方程(R2=0.98)。  相似文献   

10.
羽毛角蛋白海绵材料对亚甲基蓝的吸附去除   总被引:2,自引:0,他引:2  
以羽毛角蛋白提取后产生的残渣为原料,采用简单物理法制得角蛋白海绵材料,通过扫描电镜和红外光谱对其表观形貌和表面结构进行表征,同时以亚甲基蓝染料作为实验对象,考察制得的海绵材料对其吸附特性和去除效果。结果表明,当吸附平衡时间为1 440 min、亚甲基蓝溶液初始浓度为100 mg/L、海绵材料投加量为0.06 g、反应温度为25℃、溶液pH为7.0时,海绵材料对亚甲基蓝的吸附去除率可达98%以上,同时由Langmuir等温吸附模型拟合结果可知,海绵材料对亚甲基蓝的最大吸附量可达151.5 mg/g。因此,将羽毛角蛋白提取后产生的残渣可制备良好的染料吸附剂,取得良好的环境效益。  相似文献   

11.
羧甲基纤维素(CMC)/有机蒙脱土(OMMT)纳米复合材料作为吸附剂应用于废水处理,对其结构进行了表征并对吸附时间、染料初始浓度、染料pH对该吸附剂吸附染料刚果红的影响进行了研究,同时探讨了吸附动力学和吸附热力学。结果表明,羧甲基纤维素与有机蒙脱土已经很好地复合,在吸附温度为30℃条件下,当吸附时间为4 h,染料初始浓度为800 mg/L,染料pH=10时吸附剂对染料表现出较好的吸附效果,吸附量可达156.64 mg/g。吸附符合伪二级动力学模型和Langmuir等温式。分别借助振荡器和超声波对吸附饱和的吸附剂进行解吸,研究解吸时间对吸附剂解吸实验的影响,结果表明,超声波条件下的解吸效果(34.45%)好于无超声波条件(15.69%),超声波有助于提高解吸率。  相似文献   

12.
城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附   总被引:1,自引:0,他引:1  
热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。  相似文献   

13.
通过甲醇酯化制备改性棉铃壳吸附剂,利用红外光谱仪、扫描电镜等表征了改性前后棉铃壳表面结构和官能团变化情况,考察了改性棉铃壳投加量、刚果红初始浓度和溶液pH等因素对改性棉铃壳吸附水中刚果红的性能影响,并通过实验分析了改性棉铃壳对水中刚果红吸附动力学。结果表明,改性后棉铃壳表面官能团明显改变,表面光滑、致密。改性棉铃壳对刚果红的吸附效果较未改性棉铃壳明显提高,增加刚果红初始浓度和吸附时间可以增加改性棉铃壳对刚果红的吸附量。在溶液pH为6、吸附剂投加量为20 g·L-1,吸附时间为120 min时,刚果红的去除率可达79.1%。改性棉铃壳对刚果红的吸附过程符合Lagergren准二级动力学模型,吸附过程属于化学吸附,吸收速率受表面扩散和颗粒内扩散控制。  相似文献   

14.
蒋绍阶  王洪武 《环境工程学报》2019,13(10):2347-2356
采用常温搅拌法,在聚苯乙烯磺酸钠(PSS)处理过的Fe_3O_4表面诱导生长ZIF-8壳层,成功合成了磁性核壳金属有机骨架Fe_3O_4@ZIF-8,并对其吸附去除偶氮染料刚果红的性能进行了探究,考察了刚果红初始浓度和接触时间、Fe_3O_4@ZIF-8投加量以及pH对刚果红去除的影响。SEM、TEM、XRD、FT-IR及VSM表征结果证明,ZIF-8纳米颗粒已成功负载于Fe_3O_4表面,形成了典型的核壳结构,并且具有优异的磁学性能。吸附实验结果表明,反应最佳pH为6,吸附剂投加量为500 mg·L~(-1);当反应时间达到180 min时,吸附达到平衡。吸附反应的吸附动力学和吸附等温线分析表明,刚果红染料在Fe_3O_4@ZIF-8上的吸附动力学符合二级动力学方程,吸附等温线符合Langmuir模型。Fe_3O_4@ZIF-8吸附剂对刚果红具有高效的选择吸附性能并且在循环吸附中展现出良好的循环吸附性能。因此,磁性核壳金属有机骨架Fe_3O_4@ZIF-8作为吸附剂在去除刚果红染料方面有着广阔的应用前景。  相似文献   

15.
熊晓莉  王超  李宁 《环境工程学报》2016,10(11):6720-6726
黄粉虫养殖过程中,会产生大量的虫粪。用黄粉虫粪为原料制成吸附剂,并用于亚甲基蓝模拟废水的处理。研究在不同磷酸浓度W、浸泡时间t1、活化温度T、活化时间t2等制备因素影响下,吸附剂对亚甲基蓝的吸附能力。结果表明,黄粉虫粪吸附剂最佳制备条件为:W=25 wt%,t1=10 min,T=400℃,t2=50 min。此条件下制备的吸附剂的比表面积为(589.6±2.1)m2·g-1。该吸附剂对亚甲基蓝的吸附动力学符合Ho-McKay模型,吸附速度控制步骤为内扩散,吸附等温线符合Langmuir模型,最大吸附量可达117.65 mg·g-1,吸附过程为热力学自发行为。  相似文献   

16.
以亚麻为原料,氢氧化钾为改性剂,制备了一种吸附剂,用红外光谱和扫描电子显微镜对其结构进行表征,并对其吸附亚甲基蓝的性能进行了研究。结果表明,经120℃、0.8mol/L氢氧化钾改性的亚麻对亚甲基蓝的吸附量和去除率明显提高。经优化,当pH=5、超声功率为50%(125W)、超声时间为25min、亚甲基蓝初始质量浓度为300mg/L、改性亚麻投加量为0.3g时,亚甲基蓝的去除率为95.1%,吸附量为28.54mg/g。其中,pH=5~9、亚甲基蓝初始质量浓度为300~500mg/L时,亚甲基蓝的去除率和吸附量变化不大。改性亚麻对亚甲基蓝的吸附过程符合Freundlich吸附等温式,其动力学过程符合准二级动力学方程。  相似文献   

17.
改性甘薯渣对亚甲基蓝的吸附特性及吸附机制   总被引:1,自引:0,他引:1  
陈莉  司慧  靳峰  崔清清  周丽 《环境工程学报》2016,10(8):4277-4283
以甘薯渣作为材料,针对亚甲基蓝溶液初始浓度、溶液pH、改性甘薯渣加入量、吸附温度、吸附时间各因素对吸附率的影响进行实验,进一步对影响显著的初始浓度、加入量、时间采用二次正交旋转组合设计优化,得到浓度80 mg·L-1、加入量1.0 g、时间1 h时预测最大吸附率96.25%,实测95.89%,二者吻合。改性甘薯渣对亚甲基蓝吸附过程符合Freundlich等温式及准二级动力学模型,说明其吸附过程由化学速率控制的多位点物理化学混合吸附。据Langmuir等温式计算饱和吸附量为20.16 mg·g-1。SEM观测得知改性甘薯渣处理后疏松多孔的表面有利于吸附。经FTIR可知,羟基、羧基在吸附过程中有主要作用。  相似文献   

18.
以印染活性污泥为原料,氯化锌为活化剂制备污泥活性炭,并将其用于吸附水中的亚甲基蓝。通过扫描电镜和X射线粉末衍射仪对污泥活性炭进行表征分析,结果表明,污泥活性炭以中孔为主,该孔隙结构更适合于对大分子染料的吸附。详细研究了锯末添加量、初始pH、吸附温度及初始浓度对污泥活性炭吸附亚甲基蓝的影响。结果表明,1%锯末的添加有助于提高活性炭的吸附能力,而过量的锯末添加会影响活性炭的孔隙结构。活性炭对亚甲基蓝的吸附容量随pH的增加而减小,酸性条件较碱性条件更利于对亚甲基蓝的吸附去除。在5~45 ℃的范围内,亚甲基蓝吸附量随温度升高而增加,温度为45 ℃时达到最大吸附量。从热力学角度研究了污泥活性炭对亚甲基蓝溶液的吸附行为,热力学研究表明,污泥活性炭对亚甲基蓝的吸附符合Langmuir 等温吸附方程。研究结果可为印染污泥的资源化利用提供一定的技术支持。  相似文献   

19.
胺化麻黄废渣生物吸附剂对水中阳离子染料的吸附   总被引:1,自引:0,他引:1  
以麻黄废渣为原料,采用环氧氯丙烷和二乙烯三胺对其进行化学改性,得到麻黄废渣的改性产物。将其应用到中性红和亚甲基蓝2种染料模拟废水的吸附实验,并研究了p H值、吸附剂用量、吸附时间等因素对吸附的影响。结果表明,在p H值为5.5,吸附温度为25℃的条件下,用4 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为1 000 mg/L的中性红溶液0.5 h,去除率为99.89%;用10 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为500 mg/L的亚甲基蓝溶液1 h,去除率为99.38%。改性吸附剂对中性红和亚甲基蓝的吸附可以用准二级动力学方程描述,吸附等温线符合Langmuir和Freundlich模型,根据Langmuir方程,25℃时胺化麻黄废渣生物吸附剂对中性红和亚甲基蓝的最大吸附量分别为362.3 mg/g和152.7 mg/g。实验结果显示,胺化麻黄废渣生物吸附剂是一种吸附性能优异的吸附剂,用于处理染料废水有较好的应用前景。  相似文献   

20.
采用水溶液化学沉积法制备纳米二氧化锰,生成了δ-MnO2、γ-MnO2、α-MnO2,采用XRD、SEM和BET等手段进行了表征。以碱性染料亚甲基蓝为目标污染物,不同晶型纳米二氧化锰作吸附剂进行了静态吸附实验;在催化臭氧化亚甲基蓝的实验中,研究了溶液的pH值、催化剂的加量以及自由基引发剂与促灭剂对催化效果的影响。结果表明:3种催化剂δ-MnO2、γ-MnO2和α-MnO2的平衡吸附量分别为58.47、50.87和40.52 mg·g-1,其中δ-MnO2的吸附性能较强;3种催化剂的吸附动力学符合准二级吸附动力学。当溶液pH=11时,催化臭氧化反应体系对亚甲基蓝的降解效果最佳。在此催化臭氧化系统下,主要遵循的是羟基自由基的反应机理。δ-MnO2应用于催化臭氧化亚甲基蓝,不仅具有良好的脱色效果,并具有一定的矿化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号