首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、定向聚丙烯(OPP)、聚对苯二甲酸乙二醇酯(PET)等6种典型原料的塑料制品生产,选择了广东省内5家典型生产企业,通过气袋采样法和预浓缩气相色谱-质谱联用仪系统进行了样品采集和测定,获得了塑料制品行业VOCs排放化学谱和排放因子.对企业所采用的活性炭吸附法、水雾喷淋法等VOCs处理方法,比较了VOCs废气处理前、后的差异.结果表明,所采样企业VOCs处理前、后组分均以含氧挥发性有机物(OVOCs)、芳香烃和烷烃为主;主要物种为己醛、苯乙烯、甲苯、甲基乙基酮和正十二烷等.VOCs处理前、后排放因子变化分别为1.0~8.1 g·kg-1及1.5~6.8 g·kg-1,平均分别为4.6 g·kg-1及4.3 g·kg-1.VOCs经处理前、后归一化臭氧反应活性(ROF)分别为2.83和2.43 g·g-1,主要由OVOCs和芳香烃贡献;归一化二次有机气溶胶反应活性(R...  相似文献   

2.
近年来,兰州市夏季臭氧污染问题日渐凸显,已成为影响当地环境空气质量达标的首要污染因子和制约环境空气质量持续改善的突出短板.解决臭氧污染问题需结合城市经济发展的实际情况定量评估前体物减排量并提出切实可行的减排对策,为环境管理的中长期规划提供科学依据.在2015年本地排放清单的基础上,通过情景分析法预测了兰州市2030年3种梯度城市发展与污染控制情景下臭氧的两类主要前体物氮氧化物(NOx)和挥发性有机物(VOCs)的排放量,利用WRF-Chem模型对不同情景下的2030年夏季臭氧污染程度进行了数值模拟,分析了臭氧浓度与生成敏感性的时空变化情况,并提出了兰州市臭氧前体物的总量控制参考和针对不同行政区的减排对策建议.结果表明,3种不同的城市发展与污染控制情景下兰州市2030年NOx排放量为4.57×104~12.14×104 t, VOCs排放量为5.30×104~7.69×104 t, NOx排放可通过调整能源结构,加强末端治理和限制机动车...  相似文献   

3.
以PM2.5和O3浓度超标为表征的区域性大气复合污染已成为当前我国大气污染的主要问题,严重影响到经济的发展和社会的和谐,探究PM2.5与O3的协同控制近年来成为大气污染防控的热点.本文基于WRF-Chem模式,结合气象、大气污染物观测数据及MEIC排放清单等数据,依据不同比例的NOx和VOCs减排量,设计了36组减排情景,模拟了长三角地区PM2.5和O3复合污染时段的空气质量状况.同时,利用综合经验动力学(CEKMA)方法,综合考虑NOx和VOCs减排的边际效益成本和环境健康效益,评估了长三角地区NOx及VOCs减排对PM2.5和O3大气污染控制的影响.最后,定性并定量地研究两者的协同关系及协同减排效果,给出了该区域在复合污染情景下的先侧重VOCs、后侧重NOx减排的协同优化路径,采取先减少NOx排放约7...  相似文献   

4.
重化工园区产能增加将加大园区挥发性有机物(VOCs)排放总量,进而影响本地及周边城市O3浓度.珠三角实施的“VOCs倍量替代”政策可在城市层面有效抵消重化工园区VOCs排放量上升的不利影响,还可进一步降低城市VOCs排放总量,实现区域O3浓度下降.以惠州市某大型重化工园区为例,编制2018—2020年重化工园区产能增加以及实施“VOCs倍量替代”政策的污染物排放清单,基于WRF-CMAQ模拟体系,定量分析多种情景下园区在基准年(2017年)7—10月气象条件下对惠州市及周边城市O3影响程度.研究表明,重化工园区增产而增加VOCs排放4101.96 t,“VOCs倍量替代”综合减排余量7298.97 t;“VOCs倍量替代”政策可有效解决重化工园区增产对O3浓度的不利影响,其中7月最为显著,主导东南风下风向的深圳市及惠州市大亚湾管委会站点O3浓度降幅最大,分别为3.9μg·m-3(下降率2.97%)和7μg·m-3(下降率4.95%);...  相似文献   

5.
东莞是珠三角O_3污染最严重的城市,使用RSM/CMAQ(曲面响应模型)法分析了珠三角区域人为排放的NO_x和VOCs对东莞市O_3浓度变化源贡献.2014基准年分析结果表明,扣除模型域外区域传输及天然源排放对O_3本底浓度贡献(41.00%)后,东莞本地VOCs排放对O_3贡献最大(18.50%),珠三角区域NO_x减排率13%时可持续降低东莞市O_3浓度.进一步使用ABa CAS-SE(空气污染控制成本效益与达标评估系统)对2017、2020、2025东莞市3个未来年O_3污染控制情景进行了费效评估.评估结果显示,NO_x和VOCs控制比例相对较低的2017年控制情景人体健康效益/区域控制成本比约为1.1;而控制比例相对较高的2025年东莞O_3达标情景效益成本比仅为0.1.这说明,在高减排率情景下,以末端治理为主的控制措施经济可行性较差,需综合采取产业/能源结构调整、清洁生产等措施实现NO_x和VOCs的大比例减排,实现东莞O_3的稳定达标.今后将进一步研究NO_x和VOCs减排对PM_(2.5)环境浓度及健康效益影响,开展多目标污染物协同控制费效评估.  相似文献   

6.
排放控制区政策下船舶辅机大气污染物排放特征研究   总被引:1,自引:0,他引:1  
船舶运输业蓬勃发展的同时,也向大气中排放了大量有害气体.为此我国制定了分阶段实施的船舶排放控制区政策,以期通过限制燃油含硫量控制船舶大气污染问题.本研究于2016年和2018年在排放控制区政策实施前后,连续对A船和B船2艘万吨级航海船进行登船实测,使用"碳平衡法"计算了船舶尾气中各类污染物基于燃油消耗量的排放因子.结果表明,A船、B船由使用含硫量为2.20%和2.10%的燃油转为使用含硫量为0.470%和0.003%的燃油后,SO2排放因子分别由44.00 g·kg-1和42.00 g·kg-1下降到9.40 g·kg-1和0.80 g·kg-1,PM2.5排放因子分别由2.44 g·kg-1和1.02 g·kg-1下降到0.870 g·kg-1和0.003 g·kg-1,TVOC排放因子则分别由0.061 g·kg-1和0.106 g·kg  相似文献   

7.
自2013年《大气污染防治行动计划》实施后,南京市大气污染有所改善,但仍面临着细颗粒物(PM2.5)和臭氧(O3)污染问题.为探究污染物浓度对其前体物减排的响应,获得有效的减排策略,常利用大气化学模式进行多组基于排放扰动的敏感性试验,而这需要消耗大量计算时间和计算资源.应用随机森林算法对2015年大气化学传输模式(GEOS-Chem)模拟结果进行机器学习,高效地预测了南京2019年PM2.5浓度日均值和日最大8 h臭氧(MDA8 O3)浓度对不同人为源排放控制情景的响应.随机森林结果表明2019年中国人为排放每减少10%,南京ρ(PM2.5)季节平均值下降2~4μg·m-3.当2019年中国人为源减排比例高于20%时,南京ρ(PM2.5)年均值将低于国家二级限值(35μg·m-3).若仅对中国地区O3前体物氮氧化物(NOx)和挥发性有机污染物(VOCs)同比例减排,反而...  相似文献   

8.
家具制造业是典型的高污染低附加值、工艺相对落后、污染治理水平低和挥发性有机物(VOCs)排放较为严重的行业,是我国VOCs防治的重点行业.本文以典型家具制造企业为研究对象,开展家具制造业VOCs排放特征和环境影响研究,获取了典型企业VOCs排放浓度水平和成分谱,分析了家具制造业VOCs的环境影响.结果表明,封边、底漆、底色、面漆和晾干等车间VOCs浓度范围为9. 18~181. 58 mg·m-3,处理设施出口VOCs浓度为30. 64~155. 94 mg·m-3,处理效率为7. 43%~67. 14%;车间主要VOCs物种为芳香烃、酯类和醛酮类物质;排气筒主要VOCs物种为酯类和芳香烃,其次为烷烃类物质;行业主要VOCs物质为乙酸仲丁酯、甲苯、间-二甲苯、甲缩醛和乙苯等.车间和排气筒VOCs平均臭氧生成潜势(OFP)分别为258. 01 mg·m-3和289. 14 mg·m-3,平均二次有机气溶胶生成潜势(SOAFP)分别为148. 66 mg·m-3和165. 31 mg·m-3,各排放环节中对OFP和SOAFP贡献最大的皆为芳香烃类物质,封边车间的OFP和SOAFP较大,应加强控制.车间边界VOCs中主要恶臭物质为乙酸仲丁酯、间-二甲苯、乙酸丁酯、对-二甲苯、乙苯、1-乙基-3-甲基苯、邻-二甲苯和甲苯,厂界VOCs几乎不产生恶臭污染.建议有针对性地加强芳香烃和酯类物质的控制.  相似文献   

9.
“十三五”挥发性有机物总量控制情景分析   总被引:2,自引:1,他引:2  
总量控制制度是一种行之有效的污染控制手段,我国从2016年开始对挥发性有机物(volatile organic compounds,VOCs)进行总量控制.采用"排放因子法"和"回归分析法",估算和预测我国2015年和2020年人为源VOCs排放量,结果表明,2015年我国人为源VOCs排放量约为3 111.70万t;2020年基准情景VOCs排放量预计为4 173.72万t,相比于2015年增长了34.13%.根据"十三五规划纲要"中的减排要求,全国2020年VOCs总量控制目标为2015年排放量的90%,即2 800.53万t,"十三五"期间,全国至少需减少排放1 373.19万t的VOCs.在此基础上,以2015年为基准年、2020年为目标年,通过情景分析法,设置我国"十三五"期间可能推行的3种总量控制情景:重点区域全面推进VOCs减排、重点行业全面推进VOCs减排、重点区域重点行业推进VOCs减排,并对每种情景下的控制总量进行分配.结果表明,3种情景的减排潜力与削减任务均存在一定的缺口,实现"十三五"总量减排目标难度大,需要加大VOCs污染控制力度.  相似文献   

10.
挥发性有机物(VOCs)作为臭氧(O3)形成的关键前体物之一,其有效削减对于降低O3浓度起着重要作用。本文运用排放系数法和情景分析法,分析了近十年我国VOCs排放量的变化趋势,并预测了基准情景、控制情景、强化控制情景三种情景下"十四五"期间的VOCs排放量,预测结果显示,在控制情景和强化控制情景下,"十四五"时期我国人为源VOCs排放量均将得到较大削减。最后根据预测结果,从总量控制、综合治理、管理体系、监测能力和监管能力五个方面对"十四五"时期国家VOCs减排工作提出了政策建议。  相似文献   

11.
浙江省包装印刷行业挥发性有机物排放特征及排放系数   总被引:1,自引:0,他引:1  
本文通过2105年浙江省254家包装印刷企业的调查数据,剖析了该行业原辅料组分及挥发性有机物(VOCs)污染治理现状,并筛选出100家典型企业,按印刷工艺划分阐述包装印刷行业VOCs排放特征、核算VOCs排放系数.结果表明,浙江省近2/3包装印刷企业未能有效处理VOCs,且大部分企业仍使用溶剂型原辅料,主要排放污染因子为乙酸乙酯、异丙醇、乙醇、乙酸丙酯、乙酸丁酯等9种物质.全省包装印刷行业VOCs平均排放系数为0.485 kg·kg~(-1),其中凹印工艺排放系数最高,为0.634 kg·kg~(-1).与物料衡算法计算值相比,由排放系数得到的排放量误差控制在15%以内.  相似文献   

12.
中国集成电路制造行业VOCs排放特征及控制对策   总被引:2,自引:0,他引:2  
中国电子信息产业发展迅速,集成电路等电子器件产量不断增加.在集成电路制造的过程中,大量有机溶剂的使用导致VOCs的产生和排放,从而对大气环境造成影响.为掌握集成电路制造行业VOCs的排放特征,系统分析了其工艺流程和产排污环节,分析了行业废气收集和治理现状,通过对典型企业VOCs的排放监测,获得VOCs排放水平;采用排放因子法核算行业VOCs历史排放量,并基于行业排放特征及减排潜力分析,提出了相应的污染防治对策.结果表明:在集成电路制造中,VOCs排放环节主要集中在光刻、清洗、去胶等过程,1 m2集成电路产量约使用87 g有机溶剂,VOCs产生量较大;通过采取高效的VOCs治理技术,集成电路制造行业有组织排放水平较低,平均浓度为2.1 mg·m-3,但厂界无组织排放浓度相对较高,平均浓度为0.78 mg·m-3,接近国家标准的排放限值.根据排放量核算结果,2011—2016年中国集成电路制造行业VOCs排放量呈逐年上升的趋势,主要受产量增加而相应污染控制技术水平提升有限的影响,无组织排放量比重大,占排放总量的38.1%~45.1%.  相似文献   

13.
非道路柴油车尾气是影响我国空气质量的重要排放源,但目前针对其化学组分及其影响因素的了解仍然非常有限.以6台内燃叉车为研究对象,利用气态组分在线监测结合样品采集离线分析方法,重点探讨了柴油机颗粒物过滤器(DPF)对叉车尾气中的关键化学组分挥发性有机物(VOCs)和正构烷烃含量及其特征的影响.结果 表明,含氧挥发性有机物(...  相似文献   

14.
为探明当前浙江省汽摩配行业挥发性有机物的整体排放与治理情况,以2015年浙江省范围内的70家汽摩配企业的VOCs调查数据为基础,展开了前期研究工作.通过分析全部70家汽摩配企业的调查数据,了解了行业的VOCs污染治理现状;通过深入研究筛选出的56家典型企业的调查数据,探究了行业的VOCs污染基本特征、以及初步计算了其VOCs排放系数.结果表明,虽然省内约三分之二的企业配有废气收集处理设施,但多数设施在运行维护方面存在着一定的问题;行业内使用的原辅材料以溶剂型为主,废气中VOCs的主要污染因子为二甲苯、乙酸丁酯、环己酮、乙酸乙酯、甲苯等物质;全省汽摩配行业的VOCs排放系数均值为4.14 kg·(万元)~(-1),其中汽配企业为2.94 kg·(万元)~(-1),摩配及通用型配件企业为7.15kg·(万元)~(-1).  相似文献   

15.
选取塑胶零件、印刷线路板及主板3类消费电子产品部件为研究对象,利用活性炭管采样,样品溶剂解吸后采用GC/MS分析,获得了各排气筒及车间内VOCs含量水平与组分特征.通过计算排放量,得出了分物种VOCs排放系数.结果表明,塑胶零件生产线排气筒总挥发性有机物(TVOCs)浓度为48.01~115.05 mg·m-3,印刷线路板为6.08~11.36 mg·m-3,主板为29.81~30.21 mg·m-3.塑胶零件生产车间内TVOCs浓度为4.23~120.58 mg·m-3,印刷线路板为1.50~2.02 mg·m-3,主板为7.01~9.93 mg·m-3.环烷烃类、酯类、苯类为主要排放物质.对于不同产品生产线的排气筒及车间废气,浓度和物种均有很大差异;对于相同产品,浓度有差异但物种基本相同.按产品分类,共计算得出了36个分物种VOCs排放系数,其中,塑胶零件、印刷线路板及主板TVOCs排放系数分别为0.626 kg·kg-1涂料用量、0.123 kg·kg-1油墨用量、0.028 kg·kg-1印刷线路板用量.通过排放量计算结果分析,3种产品中,塑胶零件生产为VOCs主要排放源,车间内无组织排放为主要排放方式.  相似文献   

16.
民用生物质燃烧挥发性有机化合物排放特征   总被引:20,自引:12,他引:8  
李兴华  王书肖  郝吉明 《环境科学》2011,32(12):3515-3521
民用生物质燃烧是我国人为源挥发性有机物(VOCs)排放的主要来源.采用罐采样-GC/MS和DNPH衍生-HPLC这2种方法联用采集和分析了5种主要民用生物质燃烧排放烟气中的VOCs组分,并利用碳平衡法确定其排放系数.研究表明,秸秆和木柴等民用生物质燃烧总的VOCs排放系数分别为(4.37±2.23)g·kg-1和(2.12±0.77)g·kg-1,秸秆燃烧排放高于木柴燃烧排放;民用生物质燃烧排放VOCs中,最为丰富的物种为芳香烃和醛类,含量均在25%以上;秸秆和木柴燃烧除卤代烃和腈类含量差异较大外,其余物种分布比较类似;秸秆和木柴燃烧VOCs排放总的臭氧生成潜势分别为(16.9±8.2)g·kg-1和(10.8±4.9)g·kg-1;臭氧生成潜势比较高的物种依次为:醛类、芳香烃和烯烃/炔烃,其中醛类贡献基本在50%以上.  相似文献   

17.
魏宁  刘胜男  魏凤  李小春 《环境科学》2023,44(12):6621-6629
中国水泥行业面临巨大的碳达峰与碳中和压力.CO2捕集利用与封存(CCUS)技术是能够实现化石资源低碳利用的碳减排技术.在中国水泥企业数据基础上,采用全流程CCUS系统模型(ITEAM-CCUS)评估CCUS的碳减排潜力对水泥企业碳中和非常重要.模型从源汇匹配距离、捕集率、CCUS技术和技术水平这4个方面设置了10种情景,完成了水泥行业的企业筛选、场地筛选、CCUS技术经济评估和源汇匹配,初步回答了水泥企业结合CCUS的封存场地、减排规模、成本范围和优先项目分布等关键问题.在250 km匹配距离、85%净捕集率、CO2-EWR技术和当前技术水平情景,44%的水泥企业可以利用CO2强化地下水开采(CO2-EWR)技术开展碳减排,累计年碳减排量为6.25亿t,平准化成本为290~1838元·t-1;具有全流程CO2-EWR早期示范优势的地区为新疆、内蒙古、宁夏、河南和河北等.水泥企业开展全流程CCUS项目技术可行,可以实现大规模CO2减排,低成本项目具有早期示范机会.研究结果可为水泥行业低碳发展和CCUS商业化部署提供定量参考.  相似文献   

18.
基于工艺过程的金属包装业VOCs污染特征   总被引:1,自引:0,他引:1  
识别金属包装业挥发性有机化合物(volatile organic compounds,VOCs)产生和排放节点,定量分析不同类型生产工艺所排放VOCs的物种及含量,结合最大增量反应活性法和修正的气溶胶生成系数法对行业二次污染进行核算.结果表明,金属包装业排放的VOCs主要为苯系物、醇类、酮类和酯类,苯系物和醇类在不同类型工序和排污节点中贡献较大,酮类和酯类贡献相对较少,单物种浓度最高的VOCs为正丁醇,浓度达269.08mg·m-3;生产线与相应的排气筒之间VOCs物种浓度相关性较好,但物种种类存在差异;行业的O3和二次有机气溶胶(secondary organic aerosol, SOA)生成潜势(以O3/VOCs和SOA/VOCs计)分别为(3.09±0.94)g·g-1和(2.58±1.99)g·g-1,苯系物和内全涂烘干工序为O3和SOA的主要前体物和首要生成节点.  相似文献   

19.
典型酿造业厂界无组织排放VOCs污染特征与风险评价   总被引:3,自引:2,他引:1  
为探明酿造企业厂界无组织排放VOCs的浓度特征、恶臭污染及健康风险,采用便携式气相色谱-质谱仪对典型酿造企业醋厂和酒厂厂界无组织排放VOCs进行监测,分析研究其VOCs的浓度水平和组成特征,采用阈稀释倍数和感官测定法对VOCs进行恶臭分析,并进行了健康风险评价.结果表明,醋厂和酒厂厂界无组织排放VOCs的总浓度分别为0.968 mg·m~(-3)和0.293 mg·m~(-3).醋厂排放的VOCs中乙酸乙酯和乙酸含量较高,分别占总VOCs的76.3%和13.5%.酒厂排放的VOCs中以乙醇和己酸乙酯为主,分别占总VOCs的56.3%和30.4%.含氧VOCs是酿造企业污染源排放的主要组分.两厂总恶臭指数均大于1,表明其无组织VOCs排放对大气环境存在恶臭污染,且其臭气浓度均超过恶臭污染物厂界标准限值.醋厂和酒厂VOCs致癌风险指数分别为2.45×10~(-6)和5.25×10~(-6),超过了EPA致癌风险值(1.0×10~(-6)),但未超过OSHA致癌风险值(1.0×10~(-3))_及ICRP最大可接受的风险值(5.0×10~(-5)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号