共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
好氧污泥强化造粒过程中EPS的分布及变化规律 总被引:1,自引:0,他引:1
通过在好氧颗粒污泥生长前期投加混凝剂的方式,考察混凝剂的投加对颗粒生长的影响,用三维荧光光谱法分析胞外多聚物(EPS)在颗粒生长过程中的变化规律及其与污泥特性的相关性。结果表明,强化造粒条件下的污泥完全颗粒化的时间比对照组提前12 d,其强度和比重也分别比对照组高出2.05%和0.032。对各形态EPS三维荧光光谱分析,发现生长期松散型胞外多聚物(LB-EPS)的峰点为溶解性微生物代谢产物,及少量的芳香蛋白类物质和腐殖酸类物质,颗粒成熟后溶解性微生物代谢产物和蛋白类物质的荧光强度均减小,腐殖酸类物质消失,而溶解型胞外多聚物(S-EPS)和紧密型胞外多聚物(TB-EPS)的峰点及强度在两阶段无明显变化。在颗粒生长过程中,LB-EPS中的蛋白质含量随颗粒生长逐渐升高,颗粒成熟后逐渐降低至稳定,而多糖含量基本保持在1~5 mg/g MLSS。与S-EPS、TB-EPS相比较,LB-EPS和污泥颗粒化有密切关系,且与SVI呈正相关性(相关系数r=0.812),与相对疏水性呈负相关性(相关系数r=-0.973)。 相似文献
3.
饮用水中的病毒会引发人体健康风险,故消毒是饮用水生物安全的重要屏障。为了比较不同消毒工艺对病毒的灭活效果,在总结水介质中常见病毒的种类及特性的基础上,围绕当前饮用水处理中广泛应用的消毒工艺(氯、氯胺、臭氧、二氧化氯、紫外线),梳理了各种消毒工艺的原理、影响因素、消毒效果及实际应用中的问题。鉴于消毒工艺进水水质对病毒灭活效果影响较大,且饮用水常规、深度处理工艺均可直接、间接强化对病毒的去除效果,故提出“常规处理+深度处理+消毒”协同高效运行的饮用水多级屏障处理工艺,以有效控制病毒等致病微生物引发的饮用水水质风险。 相似文献
4.
面对城市生活污泥填埋库容趋于饱和的现状,亟需研究开发城市生活污泥的减量化及资源化技术。以填埋库污泥和新鲜污泥为研究对象,进行岩土工程特性实验,发现填埋库污泥有机质含量及含水率远低于新鲜污泥。通过固结实验和直剪实验,分别对比、分析了未加药剂的填埋库污泥和药剂调质填埋库污泥的固结系数、渗透系数和抗剪强度变化规律。结果表明:填埋库污泥在pH为4时,芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比为Fe2+=8%、H2O2=12%;当氧化钙投加量增加时,调质污泥的压缩指数减小,抗剪强度略微增大;考虑到联合处理后污泥的资源化利用、强碱性对环境的影响和处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量,且效果优于常用的氯化铁药剂调制污泥。经芬顿与氧化钙联合处理的填埋库污泥抗剪强度满足填埋库要求,能够实现减容减量,对填埋库污泥后续资源化利用具有一定的指导意义。 相似文献
5.
6.
活性炭(AC)与氯均为水处理过程中广泛使用的药剂,在实际使用过程中二者的接触不可避免,因此,深入研究AC对于氯化过程中消毒副产物(DBPs)生成的影响对于饮用水安全有重要意义。本研究对比了AC对于溶解性天然有机物(DOM)氯化过程中已知DBPs(包括三卤甲烷(THMs)和卤乙酸(HAAs))生成释放的影响,并采用傅立叶变换离子回旋共振质谱(FTICR-MS)技术检测分析其滤后水的未知氯化副产物及有机物变化规律。结果表明,在DOM氯化过程中,AC存在时释放的THMs和HAAs浓度较低,但氯的衰减速率更快,这是由于AC本身的强还原性及其他氯代副产物生成导致的。进一步通过FTICR-MS分析未知氯代产物及DOM的变化发现,在2种条件下有163种相同的氯化产物,与不存在AC时对比,AC存在时生成了不同的氯化产物中有57种。此外,AC存在时CHOCl、CHONCl和CHONSCl分子式的数量减少,而CHOSCl分子式的数量增加,并且具有芳香结构的DOM更容易被转化。通过电子自旋共振谱仪(ESR)分析发现AC表面的持久性自由基激发次氯酸钠反应生成的氯自由基(Cl·)是导致氯化产物变化的主要原因。本... 相似文献
7.
采用复合式膜生物反应器(HMBR)处理城市生活污水,对附着性胞外多聚物影响HMBR膜污染控制性能的作用机理进行了研究。实验结果表明,HMBR中附着性胞外多聚物、松散附着性胞外多聚物和紧密附着性胞外多聚物的浓度比常规膜生物反应器分别降低了10.0%、43.6%和2.1%。附着性胞外多聚物与膜表面滤饼层污泥比阻的关系较为密切,随着其浓度逐渐降低,滤饼层污泥比阻相应减小。与紧密附着性胞外多聚物相比,松散附着性胞外多聚物对滤饼层污泥比阻的影响程度更深。因此,随着反应器中附着性胞外多聚物特别是松散附着性胞外多聚物浓度的降低,HMBR的膜污染控制性能增强,反应器中膜表面的滤饼层阻力比常规膜生物反应器降低了56.9%。 相似文献
8.
为了获得氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f)以及胞外多聚物(extracellular polymeric sub-stances,EPS)对铜浸出的作用结果,进行了透析袋实验,设置2个处理,2者的浸出液均为成熟菌液,但一个将铜片装入透析袋中以隔离A.f及EPS与铜的直接接触。结果表明:(1)菌液的处理和加透析袋的处理中铜都得到了浸出,240 h铜的浸出浓度分别为6 796 mg/L和1 366 mg/L,可知A.f及EPS与铜片直接接触能促进铜的浸出;(2)透析袋的处理中Fe3+保持较高浓度,说明Fe3+与EPS络合后被阻挡在透析袋外面从而不能与铜反应,可知EPS在A.f浸铜中起了媒介载体的作用;(3)2者的SEM图表明无透析袋的处理A.f与铜在实验初期发生了吸附,实验后期则无,实验初期铜快速浸出是由于传质距离短,而后期速度变缓是由于传质距离增大。 相似文献
9.
好氧颗粒污泥胞外多聚物的提取及成分分析 总被引:12,自引:1,他引:12
EPS是微生物聚集体的重要组成部分,提取和分析好氧颗粒污泥的EPS利于深入研究这一新兴微生物聚集体.采用加热、超声、高速离心和加碱等5种方法提取好氧颗粒污泥的EPS,并分析其主要成分.结果表明,匀浆预处理是提取颗粒污泥EPS首要步骤,超声和加热分别适合EPS定性与定量分析,在35 w、超声4 min的条件下,活性污泥与好氧颗粒污泥EPS提取液中TOC产量分别为105.3 mg/g VSS和96.5 mg/g VSS;加热法(80℃,60 min)提取的EPS产量略高于超声法,对于活性污泥和好氧颗粒污泥,TOC含量分别为142.6 mg/g VSS和153.2 mg/g VSS;蛋白质是活性污泥和好氧颗粒污泥EPS中比例最大的成分,且蛋白与多糖在好氧颗粒污泥与其在絮状活性污泥中的比值范围分别为3.22~5.80和1.68~2.63. 相似文献
10.
采用两级絮凝-活性炭吸附法处理实验室无机废水,研究了该方法对重金属、硫化物、挥发酚、苯胺和浊度等的处理效果。结果表明,在絮凝温度、搅拌、曝气及污水pH值调节范围一定的情况下,硫酸亚铁(FeSO4.7H2O)与聚合氯化铝(PAC)结合的二级絮凝方法能有效地降低污水中的重金属和硫化物等污染物。二级絮凝处理中,使用聚合氯化铝(PAC)对一级絮凝中去除效果不好的Cr6+的去除效果显著,去除率达到90%以上;活性炭对苯胺和硫化物的去除效果最佳,去除率都在90%以上。同时,该方法还有效降低了废水的浊度和色度。因此,是一种快速、低成本和工艺简单的处理实验室废水的有效途径。 相似文献
11.
以垃圾渗滤液MBR出水为研究对象,采用臭氧-活性炭组合工艺对其进行深度处理。相比单一臭氧处理和单一活性炭吸附,臭氧-活性炭组合工艺能提高COD及NH3-N的去除率,并且显示出良好的协同作用。实验中利用三维荧光光谱和凝胶色谱对水质进行分析,同时考察了活性炭种类及预处理方式、活性炭用量、pH及臭氧浓度对COD及NH3-N去除率的影响。结果表明:pH=4.54、臭氧浓度为1.34 mg·min-1、活性炭投加量为10 g·L-1、臭氧处理时间为30 min、活性炭吸附时间为180 min,当垃圾渗滤液MBR出水COD为1 550 mg·L-1,NH3-N为75 mg·L-1时,经处理后,COD浓度为93 mg·L-1,NH3-N浓度为12 mg·L-1,COD的去除率达到94%,NH3-N的去除率达到84%,实现了垃圾渗滤液MBR出水的达标排放。pH对污染物的去除有较为明显的影响,高pH有利于NH3-N的去除,但是过高的pH不利于COD的去除。同时,提高臭氧和活性炭的投加量能明显提高COD及NH3-N的去除率。 相似文献
12.
以模拟啤酒废水为底物在IC反应器中进行厌氧污泥颗粒化培养,并对污泥颗粒化过程中胞外多聚物(EPS)的主要成分变化及其与细胞表面疏水性和Zeta电位之间的相互关系进行分析,以此来阐述EPS对污泥颗粒化成核的作用。研究结果表明,好氧剩余污泥在经过56 d的培养后,平均粒径由接种时的54.72μm增长到103.46μm,实现了厌氧污泥颗粒化成核过程;EPS蛋白质含量(PN)在颗粒化过程中逐渐由接种时的18.1 mg/g增至54.3 mg/g,而EPS多糖含量(PS)则无明显变化;此外,PN/PS与污泥平均粒径、细胞表面疏水性(RH)以及Zeta电位之间呈正相关关系,相关系数分别为0.9727、0.9593和0.9274。由此可推测:厌氧污泥颗粒化成核过程的主要作用成分为胞外蛋白质,其可以改变污泥细胞表面疏水性和Zeta电位,从而在厌氧污泥颗粒化过程中有着重要的促进作用。 相似文献
13.
14.
为了研究微波强化Fenton/活性炭工艺处理高浓度制药废水的影响因素,以阜新某集团公司生产制药原料排出的废水为研究对象,利用静态实验,采用混凝-微波强化Fenton/活性炭工艺对高浓度制药废水进行实验。实验用水为100 mL、COD为576~1 440 mg/L的制药废水,当活性炭投加量为2 g,H2O2投加量为3/4Qth,pH值为5,微波辐照功率和时间分别为500 W和7 min时,COD去除率可达到92.6%,出水COD在42.6~106.6 mg/L范围内。实验结果表明,活性炭的投加量、H2O2的投加量、pH值、微波辐照功率和辐照时间对微波强化Fenton/活性炭工艺的处理效果影响都较显著。 相似文献
15.
为了考察UV/H2O2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H2O2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S rRNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H2O2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H2O2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H2O2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制, 该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H2O2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。 相似文献
16.
针对企业硝基氯苯装置产生的高毒性、难降解的硝基苯类废水,开发出全混态零价铁-芬顿组合预处理工艺,并分别优化了零价铁还原和芬顿氧化的工艺条件。结果表明,pH为2.0、零价铁投加量为220 mg/L时,废水中硝基苯类物质的去除率可达98.5%以上。出水pH约为3.0,继续投加3000 mg/L的H2O2,Fe2+投加比按C(Fe2+,mg/L):C(H2O2,mg/L)=1:10,1 h内COD去除率可达90%以上,且B/C由0.08提高到0.45。可见该组合预处理工艺可大幅削减废水毒性、改善可生化性,且直接运行成本仅为26.28元/吨,具有良好的环境和经济效益。 相似文献
17.
考虑到突发性水污染中有毒有机物的高频现率,选用苯酚为有毒有机物代表,通过模拟突发苯酚污染的情况,研究了臭氧-生物活性炭(O3-BAC)工艺对苯酚污染的应急处理效果,并且分析了工程中实际环境因素如空床接触时间(EBCT)、pH值对该应急能力的影响.研究表明,在突发性苯酚污染的应急处理中,0.6 mg/L的臭氧可将初始苯酚浓度5倍于达标浓度的进水处理至饮用水达标浓度,即低于0.002 mg/L,15.3 min的空床接触时间是判定其是否为该应急过程的关键因素的分界点,为了取得较好的应急效果,可适当提高进水pH值. 相似文献
18.
紫外线对微生物的杀灭效果较好,但持续性差,引入茶多酚作为辅助消毒剂,采用管网动态模拟系统,对比了紫外线-茶多酚联合消毒和紫外线-次氯酸钠联合消毒后管网微生物的总量、群落分布和有机物荧光特性变化。结果表明,紫外线-茶多酚联合消毒对微生物的灭活效果比紫外线-次氯酸钠联合消毒更好,并且对致病菌和耐氯性细菌也有很强的杀灭能力。紫外线-茶多酚联合消毒后,酪氨酸类物质荧光和类腐殖酸物质荧光特性产生变化,说明这2类物质含量大量减少,可能会影响微生物的生长;此外,管壁生物膜中出现了儿茶素、表儿茶素类物质,这说明茶多酚与管壁微生物发生了相互作用;紫外线-次氯酸钠联合消毒后酪氨酸类的荧光特征峰发生蓝移,这说明次氯酸进入微生物内发挥氧化作用。 相似文献
19.
20.
响应面法优化甘蔗渣-污泥复合活性炭的制备工艺 总被引:4,自引:0,他引:4
为了提高污泥活性炭的吸附性能以提升其实际应用价值,提出在污泥中掺杂甘蔗渣制备复合活性炭,并采用Plackett-Burman联用响应面法对影响复合活性炭碘值的条件进行筛选优化。通过Plackett-Burman实验筛选出热解温度、热解时间和甘蔗渣与污泥干重比为主要影响因素,对这3个因素进行Box-Behnken实验,经响应面优化得到影响碘值的二次响应曲面模型,模型显示热解温度与热解时间、热解温度与干重比的交互作用显著,并确定了最佳制备条件:热解温度550℃、热解时间30 min和干重比50%,此时复合活性炭碘值为814 mg/g,优于未优化条件下制备的复合活性炭。通过比表面积、孔结构和碘值的测定以及元素和扫描电镜分析得出,甘蔗渣的掺杂提高了复合活性炭的比表面积、微孔体积、碘值及含碳量。研究结果表明,甘蔗渣掺杂和制备条件优化是提高污泥活性炭吸附性能的有效手段。 相似文献