首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对水中三价砷As(Ⅲ)毒害大、难去除的问题,本研究采用FeSO4/K2FeO4组合处理方式以恒温浸润法对活性炭进行改性,制备获得原位铁氧化物载铁活性炭(AFPAC),利用负载的铁氧化物的吸附性能,耦合活性炭的吸附和有效的固液分离功能,实现了As(Ⅲ)的高效去除.结果表明,当AFPAC投加量1g·L-1时,对初始质量浓...  相似文献   

2.
研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的pH从3升高到9的过程中,吸附量先增加后有所下降,当pH 为7时,改性前后的活性炭对砷的吸附量达到最高。  相似文献   

3.
为了探究氧气对纳米零价铁(nZVI)除砷的影响,考察了不同的氧含量(厌氧、低氧、中氧和高氧)条件下nZVI对As(Ⅲ)/As(V)的去除效果,并结合表征结果分析了氧气对nZVI除砷的影响机制。结果表明:氧气存在会显著促进nZVI对As(Ⅲ)/As(Ⅴ)的去除,但不同氧含量对nZVI除砷的促进程度有所不同;随着氧含量的增加,As(Ⅲ)/As(Ⅴ)的去除率呈现先增大后减小然后再增大的趋势。在初始砷浓度为50 mg·L−1、nZVI投加量为200 mg·L−1、O2/nZVI摩尔比等于0.5时,砷的去除率达到最大,As(Ⅲ)和As(Ⅴ)体系中砷的去除率分别为96.27%和51.75%。固相表征结果表明:氧气对nZVI的氧化程度及除砷效果具有较大的影响,在低氧条件下,nZVI被少量氧化为无定型铁矿物进而提高除砷效果;在中氧条件下,nZVI被氧化为大量的溶解态Fe(Ⅱ)/Fe(Ⅲ),溶解态铁对砷没有去除效果,从而导致砷的去除率降低;在高氧条件下,nZVI被大量氧化,溶解态Fe(Ⅱ)/Fe(Ⅲ)进一步被氧化形成新的无定型铁矿物,可增强除砷效果。以上结果可为评估不同氧含量条件下纳米零价铁除砷效果以及人为强化纳米零价铁除砷效果提供参考。  相似文献   

4.
利用锆、铁氧化物对活性炭纤维进行改性,制备了一种新型高效除磷吸附剂——负载锆铁氧化物的活性炭纤维(ACF-ZrFe)。综合运用单因素实验与正交实验对吸附剂的制备条件进行优化,同时利用环境扫描电镜和傅里叶变换红外光谱分析对吸附剂表面性质及反应机理进行了探究。实验结果表明,ACF-ZrFe制备的最佳条件为:锆铁摩尔比7:3,浸渍液中锆铁总浓度0.1 mol/L,超声处理时间10 min。当pH为4时,ACF-ZrFe对磷的吸附效果最显著。NO3-、SO42-、F-和Cl-等共存阴离子对磷吸附有一定抑制作用,其作用强弱顺序为:F- > NO3- > Cl- > SO42-。Langmuir等温吸附模型很好地描述了ACF-ZrFe对水中磷的等温吸附行为,最大吸附量为27.03 mg/g,吸附动力学满足准二级动力学模型,表明化学吸附是该反应的主要限速步骤。红外光谱分析及pH影响实验表明,ACF-ZrFe吸附磷的主要机理为阴离子配位体交换和静电吸附。  相似文献   

5.
设计制作了悬挂氯化铁改性颗粒椰壳活性炭(以下简称铁改性活性炭)的美人蕉(Canna indica)浮床,利用自制聚氯乙烯(PVC)水槽,研究了该浮床在不同水力停留时间(HRT)下对3.0、5.0mg/L含氟水的处理效果,并与未悬挂铁改性活性炭的美人蕉浮床进行除氟效果对比。结果表明,未悬挂铁改性活性炭的美人蕉浮床对3.0mg/L含氟水的氟去除率最高仅为9.4%。悬挂铁改性活性炭的美人蕉浮床在较长HRT(4.5d)下对3.0mg/L含氟水具有较好去除效果,水槽出水氟质量浓度最低可降至0.8mg/L,达到《地表水环境质量标准》(GB 3838—2002)Ⅲ类标准(≤1.0mg/L),氟去除率最高可达77.5%。由于受铁改性活性炭对氟离子吸附容量的影响,悬挂铁改性活性炭的美人蕉浮床在较短HRT(1.8d)下对5.0mg/L含氟水处理效果不理想,水槽出水氟质量浓度最低仅降至1.9mg/L,未达到GB 3838—2002Ⅴ类标准(≤1.5mg/L),氟离子去除率最高为58.0%。  相似文献   

6.
为了研究改性前后活性炭对水中铬离子(Ⅵ)的吸附效果,以磷酸活性炭(PAC)为原料,用10%硝酸改性得到硝酸改性活性炭(N-PAC)及直接蒸发法载铁改性得到载铁活性炭(Fe-PAC)。通过静态吸附研究表明,改性后活性炭对Cr(Ⅵ)的吸附率有较大提高。在常温、自然pH条件下,0.2 g活性炭处理50 mL浓度为100 mg/L的含Cr(Ⅵ)溶液,N-PAC和Fe-PAC对Cr(Ⅵ)的吸附率分别为79.21%和90.59%,都高于原PAC对Cr(Ⅵ)的吸附率49.58%。pH从2.2升高到11.92,Fe-PAC对Cr(Ⅵ)的吸附率从99.86%降低到14.77%,N-PAC则从99.86%降低到3.23%,PAC从97.05%降低到2.53%。温度从25℃升高到70℃,3种活性炭对Cr(Ⅵ)吸附率都有较大提高,都增加到98%以上。且吸附过程较符合Langmuir等温吸附模型。  相似文献   

7.
利用共沉淀—煅烧法对天然锰矿进行改性,研究了铁锰摩尔比(Fe/Mn)、pH、温度、共存离子对改性锰矿除砷效果的影响。采用X射线荧光光谱(XRF)、傅立叶红外光谱(FTIR)、扫描电镜(SEM)对其进行表征,探究改性锰矿除砷机理。结果表明:(1)Fe/Mn为12∶1时对As(Ⅲ)有最大去除率(88.63%),4∶1时对As(Ⅴ)有最大去除率(84.25%)。(2)弱酸性、中性及弱碱性的溶液反应环境有助于改性锰矿对砷的吸附。(3)Ca~(2+)促进砷吸附,HCO_3~-抑制砷吸附。(4)改性锰矿对砷的吸附过程符合Langmuir吸附等温方程和二级动力学方程。(5)可利用Na_2CO_3溶液对改性锰矿进行再生解吸,再生5次后的改性锰矿对As(Ⅲ)和As(Ⅴ)的去除率分别为81.27%、75.99%。  相似文献   

8.
研究了载硫温度、硫炭比(简称S/C),吸附温度等因素对载硫活性炭的硫含量、脱汞能力以及硫损失的影响,探讨载硫活性炭制备的工艺条件优化。结果表明,不同载硫温度下制备的载硫活性炭的气态Hg0吸附能力远强于原料活性炭;载硫温度不同时,负载到活性炭孔隙或表面上的硫的形态不同,导致了脱汞能力的差异,较合适的载硫温度为350℃;S/C为5%(质量分数,下同)时,随着吸附温度的升高,载硫活性炭的气态Hg0吸附量降低;在一定的载硫温度下,原料中S/C越高时,制备的载硫活性炭的硫含量越高、气态Hg0吸附能力越强,但其硫损失率也越高,从实际的使用效果来看,较合适的S/C为10%。  相似文献   

9.
采用活性氧化铝、零价铁粉和载铁沸石作为吸附剂,通过静态吸附实验,研究3种饮用水除砷材料的吸附特性及影响因素。结果表明,在pH值为6.5,砷浓度为1 mg/L,投加量为2 g/L,25℃恒温的条件下,活性氧化铝、零价铁粉和载铁沸石分别在90 min、150 min和90 min达到吸附平衡状态,均较好符合langmuir等温吸附模型,对砷的最大吸附容量依次为7.3、3.3和3.9 mg/g。pH值和竞争性阴离子对砷的去除均有显著影响。降低溶液pH值能明显提高3种材料的除砷效率;水中磷酸根离子的存在,能够明显降低活性氧化铝和零价铁粉的除砷效率;水中硅酸根离子的存在,能够明显降低零价铁粉和载铁沸石的除砷效率。  相似文献   

10.
硝酸氧化和负载铁氧化物改性活性炭催化臭氧化性能   总被引:1,自引:0,他引:1  
采用硝酸氧化与硝酸铁负载对颗粒活性炭进行改性处理,研究了活性炭样品表面官能团的变化,分析了活性炭样品对酸性大红3R吸附和催化臭氧化能力,探讨了p H值与·OH捕获剂对催化臭氧化效果的影响。结果表明,硝酸改性后活性炭表面羧基、内酯基、酚羟基以及总官能团的含量均明显增加,其中羧基增幅最大;负载铁氧化物后,活性炭表面官能团数量有所降低。活性炭样品化学吸附性能随官能团含量的增加而增强。催化臭氧化对酸性大红3R的氧化降解效果明显优于单独臭氧化。增加表面官能团含量可以加速催化臭氧化反应,但反应速率随着表面官能团消耗而降低;负载金属组分具有更为稳定和有效的催化臭氧化活性。活性炭催化臭氧化性能在碱性条件下明显优于酸性条件,且随着p H值升高而提高。投加·OH捕获剂(Na2CO3)后,其对·OH的消耗使得催化臭氧化效果显著下降。  相似文献   

11.
通过分步液相硅烷化方法对活性炭纤维(ACF)进行疏水改性,在以辛基三甲氧基硅烷(OTMS)和十六烷基三甲氧基硅烷(HTMS)为混合硅烷,且HTMS与OTMS体积比为0.25∶0.75的条件下,改性得到的ACF(记为ACF@H∶O-E-0.25∶0.75)疏水效果及挥发性有机物(VOCs)吸附性能综合最佳,相比未改性ACF(记为BK-ACF),水蒸气吸附量减少57.1%。采用扫描电镜(SEM)、X射线能谱(EDS)、傅立叶变换红外光谱(FTIR)和N2吸附/脱附对其结构进行表征,结果表明有机硅烷成功接枝在ACF表面。ACF@H∶O-E-0.25∶0.75水接触角增加至145.8°,疏水效果得到明显改善。动态吸附实验结果表明,在相对湿度为80%时,ACF@H∶O-E-0.25∶0.75相比BK-ACF,对二氯甲烷、乙酸乙酯和环己烷的饱和吸附量分别增加71.4%、23.0%和31.1%。120℃条件下5次循环再生实验表明,ACF@H∶O-E-0.25∶0.75仍可保持90%左右的饱和吸附量,吸附再生性能良好。采用长链和短链的混合硅烷减缓了有机硅烷对ACF孔道的堵塞,增加...  相似文献   

12.
为了更为有效地利用微生物燃料电池(MFC)所产电能并提高零价铁(ZVI)去除污染物工艺的效率,构建了微生物燃料电池-零价铁(MFC-ZVI)耦合工艺,并将其应用在三价砷水溶液的处理中。实验结果表明,在该耦合系统中,ZVI直接利用了MFC所产生的低压电能,铁腐蚀速率和除砷效率因此得到显著提高。实验所用MFC的最高稳定产电电压为0.52 V,电解过程中MFC的库伦效率为4.59%,以二价铁离子计算的电流效率为72.74%。反应结束后,溶液的pH值由反应前的8.0升高到8.5。两体系中铁氧化物产生量的差异以及铁氧化物形态分布的不同可能是导致其除砷效果不同的主要原因。  相似文献   

13.
以载铝活性炭纤维毡为电极,在电场作用条件下对模拟含氟水进行静态吸附实验。结果表明,该载铝活性炭纤维毡正极化可以强化吸附除氟效果,吸附动力学数据很好地符合Lagergren二级速率方程,加电场时二级反应速率常数为4.50 g/(mg·h);其对高浓度含氟饮用水也有较高去除率,Freundlich吸附等温方程能很好地描述吸附平衡数据。加电场情况下,该载铝炭毡对氟离子的最大吸附量为16.584 mg/g,去除氟离子的最佳pH范围是5.5~8.9。共存阴离子Cl-、SO42-和NO3-对炭毡吸附除氟没有抑制作用,但CO32-的存在会导致除氟吸附量显著下降。  相似文献   

14.
一种新型复合除砷材料的制备及其性能   总被引:1,自引:1,他引:0  
将锆的水合氧化物固载于大孔螯合树脂D401上制备出一种新型除砷材料,并研究了不同实验条件下复合吸附剂D401-Zr对水溶液中As(V)的吸附性能。研究结果表明,在pH<5.2时D401-Zr对As(V)都具有较强的吸附性能;其吸附等温线与Langmuir吸附模型具有较高的吻合度;吸附动力学研究表明,D401-Zr对砷的吸附均遵循二级动力学方程;竞争吸附实验表明,与SO24-、Cl-共存时,D401-Zr对砷的去除率大于90%,而与PO34-、F-竞争离子共存时,其去除率明显下降。  相似文献   

15.
以含氟地下水为研究对象,采用自制电促吸附除氟反应器,开展电增强载铝活性炭纤维吸附除氟的动态实验,研究了不同电压、极板间距、地下水碱度和流速对吸附除氟效果的影响。实验结果表明,在负载炭纤维毡的电极一端加正电,可以提高除氟效果。当电压为1.6 V时除氟效果较好,单位面积炭毡处理达标水量为56.7 L/m2;极板间距设置为4mm时电吸附反应器除氟效果最佳;通过调节pH改变地下水碱度,当地下水pH调节为5.5时,电吸附反应器除氟效果较未调节前提高50%;当采用3对电极板,流速为1.88 m/h时,达到最高表面处理负荷2 073.6 L/(m2.d);探究了反应器的反洗再生方式,并连续进行了吸附再生的动态实验;穿透的反应器以Al2(SO4)3溶液为再生液并采用反向加电1.6 V的方式,可以达到较好的再生效果,实现连续动态运行。  相似文献   

16.
采用浸渍-碱性微波法制备载磁粉末活性炭。基于单因素实验,选定制备过程影响较显著的3个因素∶铁盐比例(n(Fe3+)∶n(Fe2+))、微波功率、微波时间,分别以碘吸附值和饱和磁化强度为响应值,通过中心组合设计及响应面分析优化制备条件。利用Design-Expert软件联合分析2个响应值的回归模型,优化得出载磁活性炭制备条件:铁盐比为1.4,微波时间为2 min,微波功率为625 W。通过对比测试不同优化条件下载磁活性炭的孔结构和磁性能,验证了优化过程的可靠性。  相似文献   

17.
研究了烧结温度和烧结时间对含砷冶炼废渣烧结过程中砷的迁移特性的影响。烧结条件为在10 MPa下加压成型,进空气流量为2 000 mL/min,烧结温度1 000~1 350℃,烧结时间5~120 min。结果表明,烧结过程中存在砷的挥发,但烧结前后砷的总量变化不大,砷的固化率均保持在90%以上。毒性浸出实验表明,不同的烧结条件对烧结体中砷的毒性浸出有重要的影响,从烧结体的环境安全性考虑,最佳的烧结温度和时间分别为1 200℃和45 min。  相似文献   

18.
采用乙醇分散法制备了纳米羟基铁修饰的玉米苞叶和竹笋壳的活性炭复合物(记为nFeOOH@AC),分析了nFeOOH@AC对水样中亚甲基蓝的吸附性能及动力学机理。研究表明,nFeOOH@AC对亚甲基蓝的吸附以化学吸附为主,符合准二级动力学模型。在亚甲基蓝初始质量浓度为3~120 mg/L,体积为50 mL,nFeOOH@AC投加量为10 mg, pH为3~12,吸附时间为1~24 h时,吸附率随着pH升高而增大,随着亚甲基蓝初始浓度的增大先增后减,随着吸附时间的增加而增加。nFeOOH@AC可以作为一种新型环境友好型吸附剂应用于亚甲基蓝废水处理。  相似文献   

19.
微波改性活性炭的吸附性能   总被引:3,自引:0,他引:3  
利用微波辐照技术代替传统的加热技术在N2 气中对煤质活性炭进行改性 ,以期提高活性炭的吸附性能。通过正交实验法 ,探讨了微波功率、辐照时间及样品粒径 3种因素对改性活性炭吸附效果的影响。结果表明 ,微波加热提高了活性炭的吸附能力 ,微波功率和辐照时间是决定改性活性炭吸附性能的关键因素 ,并通过对改性前后活性炭的孔隙结构和微结构变化进行分析 ,来讨论其改性机理。  相似文献   

20.
通过氧化-负载铁组合工艺对活性炭进行改性,对比了不同氧化剂(硝酸/磷酸)对改性效果的影响,利用Boehm、FT-IR、BET、XRD对改性活性炭(ACNF/ACPF)进行了表征,并对改性活性炭吸附水中痕量Cr(Ⅵ)的性能进行了研究。结果显示:硝酸与磷酸氧化均可显著增加活性炭表面酸性官能团数量,提高表面亲水性;改性后活性炭比表面积、孔体积和平均孔径均减小;负载的铁主要以铁(氢)氧化物形式存在于活性炭表面(ACPF)和介孔(ACNF)中;在Cr(Ⅵ)初始浓度0.5 mg/L,pH值3.0,活性炭投加量100 mg/L时,吸附12 h达到平衡,ACNF对Cr(Ⅵ)的去除率达到97.82%,出水Cr(Ⅵ)剩余浓度降至0.05 mg/L以下,满足《生活饮用水卫生标准》(GB5749-2006)要求,改性可显著提高对Cr(Ⅵ)的吸附容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号