共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
石英砂负载氧化铁吸附除磷的热动力学研究 总被引:4,自引:1,他引:4
通过吸附动力学实验及等温吸附实验,考察了在10~40℃的温度条件下石英砂负载氧化铁(IOCS)吸附磷的热动力学性质.结果表明:准二级反应动力学模型及Langmuir等温吸附模型可分别较好地描述IOCS对磷的吸附动力学及吸附等温线实验结果(R2≥0.98);吸附速率及吸附容量随温度的增加而增加.吸附速率k从0.0095增加到0.0173,吸附容量从0.06 mg/g增加到0.08 mg/g.根据标准吉布斯自由能变(△G0<0)和标准反应焓变(△H0>0)值判断,IOCS对磷的吸附是自发的、吸热的化学吸附反应. 相似文献
3.
一种新型吸附材料的除磷性能研究 总被引:4,自引:0,他引:4
针对水体富营养化的磷,采用吸附法进行处理,制备出一种新型的除磷吸附剂,对水中磷酸盐的吸附性能进行了研究,结果表明,该吸附剂对磷酸盐的吸附速率很高,在酸性条件下,其最大吸附容量为34mg/g。当溶液pH值在1~3范围内,含磷浓度为50mg/L,吸附剂投加量为200mg,接触时间为2h,磷酸盐的去除效率可达98%以上;再生后的吸附剂容量变化不大,是一种具有较高应用价值的新型材料。 相似文献
4.
α碱性氧化铁的制备及其对铬吸附性能的研究 总被引:4,自引:0,他引:4
本文对α碱性氧化铁的制备及其对铬的吸附性能作了研究。确定了制备α-碱性氧化铁的适宜条件。结果表明,在确定的条件下所制得的α-碱性氧化铁对铬有良好的吸附性。其饱和吸附量为17mg/g;最佳吸附酸度为PH5-6;溶液中共存的一价,二价阳离子和一价阴离子对铬的吸附基本无影响,而高价阴离子则严重于扰铬的吸附;吸附铬后的α-碱性氧化铁用0.5mol/l硫酸进行洗脱再生,效果良好,再生后的α-碱性氧化铁对铬的 相似文献
5.
通过树脂筛选实验,选用大孔强酸性阳离子树脂D006作为Cd(Ⅱ)的吸附材料,通过静态实验考察吸附时间、振荡转速、溶液pH和树脂用量对吸附效果的影响,并探讨了吸附的热力学和动力学性能,同时对树脂进行了再生实验。结果表明,D006树脂对Cd(Ⅱ)的平衡吸附量可达20.98mg/g;D006树脂吸附Cd(Ⅱ)的最佳条件为吸附时间120min、振荡转速120r/min、溶液pH 2.9左右、树脂用量0.20g;D006树脂对Cd(Ⅱ)的吸附过程符合Langmuir方程,为单分子层吸附;准二级动力学模型能较好地描述Cd(Ⅱ)在D006树脂上的吸附行为,吸附的活化能为5.46kJ/mol,该吸附过程主要为物理吸附;于30℃下采用1mol/L硫酸对吸附后的D006树脂进行脱附,脱附率可达到96%以上,可实现对Cd(Ⅱ)的富集与回收。 相似文献
6.
以粉煤灰为原料,采用传统水热方法制备的沸石除磷性能有限,且存在废碱液排放的问题。对此,本文首次提出了在传统水热方法基础上用氯氧化锆中和合成沸石过程中产生的废碱液,得到沸石/水合氧化锆复合吸附剂(简称锆沸石)的改进方法。锆沸石的比表面积为1.931×105 m2·kg-1,是沸石的近7倍。锆沸石的XRD衍射峰数量和位置与沸石相同,证明锆沸石中的水合氧化锆为无定形。锆沸石对磷的Langmuir最大吸附量为22.62 mg·g-1。吸附动力学实验结果表明,锆沸石对磷的吸附速率呈先快后慢的趋势。锆沸石对磷的吸附随pH上升而减少。水中常见的阴离子Cl-、NO3-不会对其除磷效果产生明显影响,而HCO32-会通过提高溶液pH值明显降低吸附量。因此,以粉煤灰为原料,采用改进的合成方法制备锆沸石可获得除磷效果大幅提高的新型吸附剂。 相似文献
7.
以给水污泥为磷的吸附材料,采用静态吸附和动态吸附方法对比研究了干、湿状态下给水污泥对磷的吸附特性。静态吸附实验结果表明,给水污泥对磷的吸附过程以化学吸附为主,满足Freundlich等温吸附方程式。在300?K条件下,原始状态的湿污泥相比烘干后的污泥能更快地达到磷吸附平衡,且具有更高的理论饱和吸附量,分别为3.487?mg·g-1(相当于11.710?mg·g-1,以干污泥计)和9.832?mg·g-1。长期动态吸附实验结果表明,原始状态的给水污泥对磷的实际饱和吸附量为3.065?mg·g-1,接近理论饱和吸附量。因此,原始状态的给水污泥可直接用作除磷材料,无需预先烘干处理。 相似文献
8.
9.
针对污水处理生化出水高磷酸盐浓度对水体富营养化影响的问题,采用阴离子交换树脂(AER)为基质材料,利用树脂上—NH2官能团中的N原子与Fe3+发生配位聚合,制备了除磷聚合配位交换吸附剂(Fe—PLE)。并采用Langmuir和Freundlich等温吸附方程对Fe—PLE和原AER进行了比较,发现Fe—PLE更加趋向化学吸附类型,且Fe—PLE最大吸附容量达到93.05 mg/g,比AER提高了47.98%。通过SEM、EDS、FT-IR及TGA对吸附前后Fe—PLE和AER的表征比较,认为通过配位作用形成Fe—O配位键是Fe—PLE的可溶性无机磷吸附效率提高的主要原因。通过静态吸附实验考察了吸附时间、pH和竞争性阴离子对AER和Fe—PLE吸附的影响,结果显示,Fe—PLE吸附平衡时间为1.5 h,比AER稍高;2种吸附填料都在pH 7.0时效率最高,AER的磷吸附效率对pH较为敏感,Fe—PLE能够在相对较宽的pH范围内保持高去除率;竞争性阴离子对AER磷吸附的负面影响较大,而Fe—PLE依靠其Fe—O的配位作用具有一定的抗干扰能力。通过4次循环再生实验,Fe—PLE表现出良好再生能力的同时磷有较高的回收利用率。 相似文献
10.
超高交联吸附树脂对有机物质甲苯的吸附热力学研究 总被引:2,自引:0,他引:2
比较了2种超高交联聚苯乙烯吸附树脂NDa99与ZH-04对甲苯的静态吸附行为.结果表明,在288~293 K和研究的浓度范围内,ZH-04、NDa99对甲苯的吸附平衡数据符合Freundlich和Langmuir吸附等温方程.吸附为放热过程,适当降低温度有利于吸附,并计算了甲苯在ZH-04和NDa99树脂上的吸附焓变、自由能变和熵变,对吸附行为进行了合理的解释,为废水处理提供一定的理论依据. 相似文献
11.
将不同摩尔比Fe3+与OH-([Fe3+]:[OH-]=1:0、1:1、1:2和1:3)反应获得原位水解生成的羟基氧化铁(insituFeOxHy),研究了具有不同水解程度的羟基氧化铁对凝聚吸附除磷效能与机制。研究显示,InsituFeOxHy对磷的去除率随铁投量增大而升高,且均在中性pH范围内具有最佳除磷效果;在相同铁投量条件下,磷去除率随着[OH-]:[Fe3+]的升高而降低;当体系碱度较低时(pH〈6),引入OH-可促进Fe3+水解而提高除磷效果。4种羟基氧化铁均可在15s内可快速吸附磷,且吸附过程符合准二级动力学模型;Freundlich模型均可很好地描述磷在4种羟基氧化铁表面的吸附行为。磷酸盐吸附后,InsituFeOxHy表面Zeta电位明显降低,且[Fe3+]:[OH-]为1:0的羟基氧化铁降低最为显著。结合MINITEQ计算软件磷酸盐、铁盐形态分析结果显示,对于碱度较低的体系,通过投加一定量OH-可促进Fe3+水解,进而使得其更易与水中H2PO4-与HPO2 4-结合,生成具有多核羟基的磷酸铁络合物,进而提高除磷效果。 相似文献
12.
以粉煤灰为吸附剂去除溶液中的磷,考察了其吸附除P动力学特征、热力学特征以及溶液初始pH和粉煤灰投加量对吸附除P效果的影响,并对其吸附除P机理做了初步探讨。结果表明,在给定实验条件下,粉煤灰对P具有较好的去除效果,随着初始P浓度从10 mg/L升高到80 mg/L,平衡吸附量为0.46~2.44 mg P/g粉煤灰,吸附效率从92.2%降低至61.1%;对不同浓度的含P溶液,粉煤灰最适用量为0.6~1.5 g粉煤灰/mg P;相同反应条件下,当温度由25℃升高到45℃时,P初始吸附速率提高了3倍;粉煤灰对P的吸附过程能够较好地拟合Langmuir、Freundlich及D-R吸附等温模型,相关系数均在0.98以上。通过对吸附饱和的粉煤灰进行解析实验发现,初始P浓度较低(<50 mg/L)时,以化学吸附为主,而在初始P浓度较高(>80 mg/L)时,则以物理吸附为主。 相似文献
13.
粒状羟基氧化铁对废水中硝酸盐的吸附 总被引:2,自引:0,他引:2
本实验研究了粒状羟基氧化铁(GFH)对人工配制含氮废水中NO3--N吸附的影响因素、吸附等温线和吸附动力学。结果表明,GFH的吸附平衡时间为80 min,增加NO3--N溶液的初始浓度,去除率下降;pH值为5时GFH对NO3--N的吸附能力最强,pH值升高和降低,吸附能力均下降;GFH对NO3--N的吸附能力随着温度的升高略有降低;在25℃下,以Langmuir方程和Freundlich方程分别对GFH吸附NO3--N的等温线进行拟合,拟合效果以Langmuir方程较好,相关性达到0.9930。GFH吸附NO3--N的过程符合拟二级动力学方程,初始时刻的吸附速率h在35℃时最大,为1.653 mg/(g.mg),吸附速率常数随温度的升高而增大;吸附反应的活化能Ea为54.72 kJ/mol。本研究结果表明,GFH在饮用水脱氮和含氮浓度较低的污水再生回用领域有实际应用的潜力。 相似文献
14.
15.
16.
新型TCAS吸附树脂对水中Cd~(2+)的吸附去除研究 总被引:2,自引:1,他引:2
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物--新型TCAS吸附树脂对重金属Cd2+的吸附去除性能,并初步探讨了吸附机理.试验研究结果表明,TCAS吸附树脂对Cd2+的饱和吸附量为14.45 mg/g.当温度为20℃,0.5 g TCAS吸附树脂对10 mL浓度为5 mg/L的Cd2+溶液吸附60 min时,Cd2+的去除率可达到99%以上.pH值是影响TCAS吸附树脂吸附效果的重要因素,在pH=5~9时,Cd2+的去除率随着pH值的升高而增大.在试验范围内,TCAS吸附树脂对Cd2+吸附符合Freundlich方程.吸附在TCAS吸附树脂上的Cd2+可洗脱回收,TCAS吸附树脂也可再生利用.TCAS吸附树脂对重金属Cd2+的吸附机理主要归因于TCAS对Cd2+的络合作用. 相似文献
17.
18.
磷作为一种重要的元素而被广泛应用于农业与工业中,然而磷的过量排放已成为许多封闭半封闭水体富营养化和沿海赤潮频繁发生的原因之一.去除水体中的营养盐特别是磷酸盐,是有效控制水体富营养化的关键.广州市某河涌水含总磷2.6 mg/L,采用并选择DS离子交换树脂对水中磷进行动态吸附和去除,可使水中的磷降至排放标准以内,解决河涌水含磷高的富营养化问题.由DS树脂所吸附的磷,通过淋洗可得到含磷富集液,使磷从水体中完全分离出来并获得回收.DS树脂的再生能力强,经6次吸附-解吸-再生后,树脂对河涌水中磷的去除率仍可达到90%以上. 相似文献
19.
20.
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物——新型TCAS吸附树脂对重金属Cd^2+的吸附去除性能,并初步探讨了吸附机理。试验研究结果表明,TCAS吸附树脂对Cd^2+的饱和吸附量为14.45mg/g。当温度为20℃,0.5gTCAS吸附树脂对10mL浓度为5113g/L的Cd^2+溶液吸附60min时,Cd^2+的去除率可达到99%以上。pH值是影响TCAS吸附树脂吸附效果的重要因素,在pH=5—9时,Cd^2+的去除率随着pH值的升高而增大。在试验范围内,TCAS吸附树脂对Cd^2+吸附符合Freundlich方程。吸附在TCAS吸附树脂上的Cd^2+可洗脱回收,TCAS吸附树脂也可再生利用。TCAS吸附树脂对重金属Cd^2+的吸附机理主要归因于TCAS对Cd^2+的络合作用。 相似文献