首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用氢氧化钠对天然沸石进行改性,将天然沸石和改性沸石用于吸附去除水中的Cu~(2+),分析了p H、温度、Cu~(2+)初始浓度、吸附时间对Cu~(2+)吸附性能的影响,并对吸附过程的吸附等温模型及吸附动力学进行研究。结果表明,改性沸石对Cu~(2+)的吸附性能明显优于天然沸石,当沸石投加量为10 g/L,Cu~(2+)为200 mg/L,p H为6.67,温度为50℃时,天然沸石和改性沸石对Cu~(2+)的吸附量分别为2.02、2.69 mg/g。Langmuir和Freundlich吸附等温模型均能较好地描述两种沸石对Cu~(2+)的吸附过程。天然沸石对Cu~(2+)的吸附行为更符合准一级动力学方程,而准二级动力学方程对改性沸石的吸附行为拟合度更好。两种沸石对Cu~(2+)的吸附均为非均相吸附,且内扩散过程不是唯一的速控步骤。  相似文献   

2.
应用改性硅藻土(CDt)/纳米零价铁(NZVI)复合材料对水溶液中的重金属Cu~(2+)进行去除研究。结果表明,CDt/NZVI能高效去除水中Cu~(2+),在CDt/NZVI投加量为0.075g、pH=5、Cu~(2+)初始质量浓度为20mg/L、溶液体积为100mL时,Cu~(2+)去除效果最好,去除率达到98.52%。CDt/NZVI对Cu~(2+)的去除机理包括吸附和还原,吸附过程符合Langmuir方程,最大吸附量为74.29mg/g;还原产物主要为Cu_2O和Cu~0。CDt/NZVI具有良好的循环利用性,循环3次后Cu~(2+)去除率仍能保持在65%以上。  相似文献   

3.
污泥活性炭对Cr(Ⅵ)的吸附研究   总被引:1,自引:0,他引:1  
研究了污泥活性炭对含Cr(Ⅵ)废水的吸附性能.利用西安某污水处理厂未消化脱水污泥,采用ZnCl2化学活化热解炭化法制备污泥活性炭,研究其处理含Cr(Ⅵ)废水的效果,考察其吸附Cr(Ⅵ)的动力学行为.结果表明,最佳吸附条件为溶液pH在1左右、污泥活性炭投加量5 g/L、吸附时间10 min、Cr(Ⅵ)初始质量浓度10 m...  相似文献   

4.
改性粉煤灰吸附稀土废水中的氨氮   总被引:2,自引:0,他引:2  
用硫酸和氢氧化钠对粉煤灰进行酸改性和碱改性处理,研究改性前后粉煤灰对稀土废水中氨氮的吸附效果变化及最佳吸附条件,并从吸附等温线入手探讨吸附机理。结果显示,经碱改性后粉煤灰对氨氮的吸附性能有明显改善,当最佳吸附条件确定为投加量2 g,吸附时间2 h,初始pH 7~8时,碱改性粉煤灰对氨氮的吸附过程符合Freundlich等温方程式和Langmuir等温方程式。碱改性粉煤灰对氨氮的吸附属于良性吸附,且为吸热过程,室温下理论饱和吸附量为1.9066mg/g。  相似文献   

5.
改性污泥活性炭对水中镉离子的吸附性能   总被引:3,自引:0,他引:3  
以城市污水处理厂的剩余污泥为原料,氯化锌为活化剂制备污泥活性炭,对一部分污泥活性炭用6.0 mol/L的硝酸进行改性,并研究了未改性和改性的污泥活性炭对Cd2+的吸附行为的影响。结果表明,在pH为5.0、Cd2+初始浓度为100 mg/L、吸附剂投加量为2.0 g/L、反应温度为25℃时,未改性的污泥活性炭吸附容量为8.45 mg/g,硝酸改性的污泥活性炭吸附容量达到了23.35 mg/g。改性和未改性的污泥活性炭对Cd2+都有较好的吸附容量,硝酸改性大幅度提高了污泥活性炭对Cd2+的吸附性能。常温下改性污泥活性炭对Cd2+的吸附符合Langmuir吸附等温式。  相似文献   

6.
响应面分析法优化造纸污泥吸附剂除磷工艺   总被引:2,自引:0,他引:2  
以造纸厂废水污泥为原料,采用微波加热法制备造纸污泥吸附剂。利用制备的造纸污泥吸附剂对模拟含磷废水进行了吸附研究,探讨了吸附时间、投加量、pH值、转速和温度等因素对除磷效果的影响,并采用响应面设计法优化吸附工艺条件。结果表明,获得了最佳除磷工艺条件为吸附时间97 min,投加量6.9 g/L,pH=6,转速200 r/min,温度30℃,在此条件下磷的去除率可达99%以上。因此,造纸污泥吸附剂对磷的吸附效果良好,具有重要的实际应用价值。  相似文献   

7.
为实现市政污泥的无害化和资源化利用,以酒糟和市政污泥为原料热解制备酒糟污泥生物炭(LBCZ),采用共沉淀法将镧(La)负载到LBCZ表面制得La改性酒糟污泥生物炭(La-LBCZ),探究了改性剂浓度、 LaLBCZ投加量、溶液初始pH和共存离子对La-LBCZ吸附磷的影响,使用SEM-EDS、BET、XRD、FTIR和XPS等表征手段分析了吸附机理。结果表明:改性剂浓度为0.1 mol·L-1时La-LBCZ对磷的吸附效果最好(吸附量为68.32 mg·g-1),为改性前的6倍;吸附过程符合准二级动力学模型和Langmuir模型,为单分子层表面的化学吸附。此外,生物炭孔隙结构不发达,La以氢氧化物形态负载到生物炭表面,络合反应是其主要的吸附机理。在吸附-脱附实验中,La-LBCZ经过5次循环后吸附量为61.2 mg·g-1,吸附率为87.79%,脱附量为52.65 mg...  相似文献   

8.
以板栗壳为原料,经过柠檬酸改性后制备成重金属吸附材料CACS,通过考察初始pH值、吸附剂投加量等因素对模拟废水中Cr(Ⅲ)去除率的影响,以及吸附动力学过程和等温吸附特征,分析探讨CACS对水中Cr(Ⅲ)的吸附特性及吸附机理。结果表明,pH为4.0,吸附剂投加量为1 g/L时,CACS对Cr(Ⅲ)的饱和吸附容量达33.4 mg/g;与未改性板栗壳CS相比,吸附容量提高了49.5%;吸附过程符合准二级动力学模型,表明吸附速率受化学吸附控制,吸附等温规律遵从Langmuir模型,表明吸附过程主要是表层吸附;结合吸附前后的扫描电镜(SEM)和傅里叶红外光谱(FTIR)的图谱分析,推断改性板栗壳CACS对Cr(Ⅲ)的吸附存在表面吸附、静电引力、络合和离子交换作用,而羟基和羧基与Cr(Ⅲ)发生配位作用可能是吸附量提高的主要原因。  相似文献   

9.
水淬渣在稀土氨氮废水中的应用研究   总被引:2,自引:0,他引:2  
研究了水淬渣原渣和铁改性水淬渣作为吸附剂处理稀土氨氮废水的工艺条件和吸附机理,实验表明,原渣和改性渣处理稀土氨氮废水的最佳反应时间都为60 min,原渣的最佳投加量为0.015g/mL,而改性渣的最佳投加量为0.01g/mL,原渣的氨氮去除率为(59.9±2.49)%,而改性渣的氨氮去除率为(79.24±1.21)%。...  相似文献   

10.
污泥-秸秆基活性炭的制备及其对渗滤液COD的吸附   总被引:5,自引:0,他引:5  
以市政污泥与玉米秸秆为原料,采用化学活化法热解制备污泥-秸秆基活性炭,研究其物化性质、热解动力学特性及对渗滤液中COD的吸附性能。考察吸附剂投加量、吸附时间和溶液pH对COD去除率的影响,并用吸附等温线对吸附数据进行了拟合。结果表明,秸秆比例越高,活性炭的吸附碘值和BET比表面积越大,最大可达663 mg/g和902 m2/g;活性炭表面呈不规则的多孔状;秸秆比例为45%的活性炭在最佳实验条件下对COD的吸附去除率为82%;活性炭对COD的吸附符合Langmuir和Freundlich等温模型。  相似文献   

11.
微波强化有机改性膨润土对磷的吸附特性研究   总被引:3,自引:2,他引:3  
利用十六烷基三甲基溴化铵(CTMAB)在微波辐射条件下对浙江临安膨润土进行改性,制得有机改性膨润土,利用其含磷模拟废水进行处理,考察了不同的工艺条件如有机改性剂用量、微波辐射强度、辐照时间、吸附时间、改性膨润土投加量、pH值对废水中磷去除效果的影响。结果表明:在有机改性剂用量为3 mmol/g,微波辐照强度为96 W/g,微波辐照时间8 min为最佳制备条件。改性膨润土用量为12 mg/L,反应时间为15 min,溶液pH为7及常温条件下,改性膨润土对浓度为50 mg/L的含磷废水去除率达到97.3%,吸附符合Freundlich吸附等温方程。  相似文献   

12.
通过钡盐沉积改性制备改性硅藻土,并将其应用于吸附模拟废水中pb2+,分析了钡盐浓度、pH、改性硅藻土投加量、水样中pb2+初始浓度以及振荡时间对改性硅藻土吸附pb2+的影响,并对硅藻土的沉降性能和改性机制进行了初步的探讨.结果表明,选择0.20 mol/L钡盐改性硅藻土,在pH为7.0、投加量为2 g、水样中pb2+初...  相似文献   

13.
化学沉降沸石吸附法处理高浓度电镀含锌废水的研究   总被引:1,自引:0,他引:1  
含锌废水对人体健康和环境具有严重的危害性。处理高浓度的含锌废水时需先进行化学沉降,然后再进行深度处理。试验结果证明,对于含289 mg/L Zn2+的电镀废水,用质量分数为10%的氢氧化钠处理,其投加量为3.7 mL/100 mL,处理后的Zn2+的浓度为6.6 mg/L。再用沸石进行吸附,沸石用量为0.25 g/L,搅拌(110 r/min)50 min,处理后,废水的锌离子去除率最高可达88.8%,剩余Zn2+浓度为0.47 mg/L,远低于《国家污水综合排放标准》(GB 8978-2002)的一级标准。  相似文献   

14.
生物质活性炭的制备及其染料废水中的应用   总被引:8,自引:0,他引:8  
以城市污水厂活性污泥为原料,用3 mol/L ZnCl2溶液活化,通入水蒸气作活化气制备活性炭吸附剂.实验结果表明,温度为600℃条件下,活化时间为1 h,制得的活性炭其碘吸附值为374.10 mg/g,比表面积为381.62 m2/g,孔容积为0.25 cm3/g,微孔容积为0.11cm3/g.并进一步将生物质活性炭应用于染料废水的处理,考察了吸附时间、活性炭投加量和pH对色度及TOC的脱除效果的影响.室温下,酸性大红GR染料废水初始浓度为300 mg/L,污泥活性炭的最佳投加量为2%(质量分数),吸附15min,废水色度脱除率可达99.6%,TOC去除率可达99.7%,利用等温吸附实验作吸附等温线,吸附等温线可以用Freundlich或Langmuir方程描述.  相似文献   

15.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

16.
松树锯末对亚甲基蓝(MB)的吸附研究   总被引:2,自引:1,他引:1  
采用松树锯末以及改性松树锯末对模拟废水中的亚甲基蓝进行吸附实验研究。研究结果表明,当亚甲基蓝的初始浓度为50 mg/L、pH为6、锯末投加量为1 g/L时,改性前后的锯末对亚甲基蓝的吸附量最大,分别为29.9 mg/g和60.6 mg/g。同时,对改性前后的锯末做了吸附等温线拟合及动力学研究。结果表明,吸附等温线均能很好地符合Langmuir吸附模式,吸附过程符合拟二级动力学方程。  相似文献   

17.
为提高对亚甲基蓝的去除效果,采用热解+NaOH浸泡方法制备了改性木屑,用SEM研究了改性对木屑表面结构的影响,并以该改性木屑为吸附剂,进行了从水溶液中吸附亚甲基蓝的性能研究。研究结果显示,改性木屑表面光滑,并出现多发熔孔。常温下,改性木屑对亚甲基蓝的吸附等温线符合Langmuir方程,最大吸附量322.58 mg/g,是原始木屑的10倍,是活性炭的3倍,改性效果显著;对浓度为200 mg/L、pH值为7的亚甲基蓝溶液,改性木屑投加量为0.8 g/L时,去除率达到了99.01%,去除效果理想。吸附动力学符合伪二级速率方程。  相似文献   

18.
厌氧颗粒污泥藻酸盐对铜离子的吸附研究   总被引:1,自引:0,他引:1  
从厌氧颗粒污泥中成功提取出细菌藻酸盐并制备成藻酸钙吸附剂,研究其对水中Cu~(2+)的吸附性能。实验结果表明,接触时间、Cu~(2+)初始浓度和溶液初始pH是影响Cu~(2+)吸附性能的重要因素。吸附等温线研究表明,Langmuir模型比Freundlich模型能更好地描述吸附过程。Cu~(2+)在藻酸钙上的吸附动力学过程可以很好地用Pseudo二级动力学方程来描述。以100 mmol/L HCI为解吸剂,可有效洗脱藻酸钙上95%的Cu~(2+),实现Cu~(2+)的回收。  相似文献   

19.
为了实现市政脱水污泥的资源化,以污泥快速热解制备富氢燃气剩余半焦作为吸附材料,对刚果红(CR)模拟染料废水进行了吸附研究。采用响应曲面法的Box-Behnken实验设计原理探究了吸附剂投加量、CR初始浓度、温度和溶液pH对CR去除率的影响,并分析了剩余半焦对CR的吸附机理。结果表明:各因素对CR去除率的影响顺序为吸附剂投加量CR初始浓度溶液pH温度;最佳吸附条件下CR的去除率为98.97%,与预测值(99.61%)基本吻合;由交互作用响应曲面分析结果得出,适当的增加吸附剂投加量,降低CR初始浓度和溶液pH均有助于提高CR的去除率;污泥热解剩余半焦的XRD和FT-IR表征结果显示,其主要成分为含硅无机物,BET结果显示孔隙结构发达,可提供较多的吸附位点;吸附CR后,没有新的官能团产生,表明剩余半焦对CR的吸附主要为物理吸附。  相似文献   

20.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号