首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation (IM), ultrasound-enhanced impregnation (UIM), conventional deposition precipitation (DP) using NaOH and homogeneous deposition precipitation (HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR, NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34 (UIM) > Cu-SAPO-34 (HDP) > Cu-SAPO-34 (IM) > Cu-SAPO-34 (DP). Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu2 + ions and CuO species, the number of the acid sites and the dispersion of CuO species on SAPO-34.  相似文献   

2.
A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH_3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns(XRD), Scanning electron microscopy(SEM), Transmission electron microscopy(TEM), N_2 sorption-desorption, nuclear magnetic resonance(NMR), Inductively Coupled Plasma-Atomic Emission spectrometer(ICP-AES), X-ray absorption spectroscopy(XPS),Temperature-programmed desorption of ammonia(NH_3-TPD), Ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS) and Temperature programmed reduction(TPR).The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion( 90%) among the wide activity temperature window in the range of 150–425℃.  相似文献   

3.
Four popular photochemical reaction mechanisms, Caltech, CB-III, CB-XR and CB-IV, are evaluated using a major, newly available set of outdoor smog chamber data. The smog chamber experiments were carried out under conditions representative of urban air. Sixteen experiments with various temperature and initial HC/NOx ratios are used to test model performance. In general the four photochemical smog models are found to give results in good agreement with experiment, particularly at moderate temperatures (15–25°C) and HC/NOx ratios of 7–16 and when the initial organic composition included gasoline vapour, synthetic exhaust and solvents. At higher temperatures (30–45°C) and at lower HC/NOx ratios (<5) the agreement is not as good. For HC/NOx = 3.5 the CB-XR and CB-IV mechanisms underestimate the final O3 concentration by up to 82%. When solvent emissions are omitted from the initial composition the Caltech and CB-III models overestimate the final O3 concentration by up to 59%.  相似文献   

4.
The grey short-tailed opossum, Monodelphis domestica, has been an established research animal for more than five decades, but relatively, little is known about its thermophysiology. Here we studied core body temperature (T b) and metabolic rate (MR) of female adult M. domestica housed in the laboratory at an ambient temperature (T a) of 26 °C. In expanding previous reports, the average recorded core T b of M. domestica was 34.3 °C. The T b of an individual M. domestica can drop below 30 °C (minimal T b: 28.6 °C) accompanied by a reduction in MR of up to 52 % even while having ad libitum access to food. These findings demonstrate for the first time the presence of spontaneous torpor in M. domestica. Metabolic suppression at relatively high T a and T b furthermore broadens our perspective on the use of torpor as a metabolic strategy not just restricted to cold climates.  相似文献   

5.
Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures (T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record T as at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed (Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats (Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum T a was ~45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when T a exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures (T skin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0 to 45.8 °C in Mormopterus, and these are the highest T skin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme T skin range known for mammals (3.3 to 45.8 °C) and delay regulation of T skin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.  相似文献   

6.
Since the solubilization of meat and bone meal (MBM) is a prerequisite in many MBM disposal approaches, enhancement of the solubilization by means of thermochemical pretreatment was investigated in this study at two temperatures (55°C and 131°C) and six sodium hydroxide (NaOH) concentrations (0, 1.25, 2.5, 5, 10 and 20 g/L). The MBM volatile solid (VS) reduction ratio was up to 66% and 70% at 55°C and 131°C, respectively. At the same temperature, the VS reduction ratio increased with the increase in the dosage of NaOH. The study on the methane (CH4) production potential of pretreated MBM shows that the addition of NaOH at 55°C did not cause the inhibition of the succeeding CH4 production process. However, CH4 production was inhibited by the addition of NaOH at 131°C. The CH4 production potential was in the range of 389 to 503 mL CH4/g VS MBM and 464 to 555 mL CH4/g VS MBM at 55°C and 131°C, respectively.  相似文献   

7.
A highly effective Ag-Al2O3 catalyst was prepared using the in-situ sol-gel method, and characterized by surface area using nitrogen adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The catalyst performance was tested on a real lean-burn gasoline engine. Only unburned hydrocarbons and carbon monoxide in the exhaust were directly used as reductant (without any external reductant), the maximum NO x conversion could only reach 40% at 450°C. When an external reductant, ethanol was added, the average NO x conversion was greater than 60%. At exhaust gas temperature range of 350–500°C, the maximum NO x conversion reached about 90%. CO and HC could be efficiently oxidized with Pt-Al2O3 oxidation catalyst placed at the end of SCR converter. However, NO x conversion drastically decreased because of the oxidation of some intermediates to NO x again. The possible reaction mechanism was proposed as two typical processes, nitration, and reduction in HC-SCR over Ag-Al2O3.  相似文献   

8.
The development of carbon dioxide(CO_2) sorbents that can operate at elevated temperatures is significant for the advancement of pre-combustion capture technologies.Recently, promoter-based systems composed of alkali/alkaline earth metal nitrates and/or carbonates have been considered as next-generation solid sorbents due to their improved CO_2 uptake and kinetics. However, obtaining stable MgO sorbents against temperature swing regeneration still remained challenging. Herein, we report MgO-TiO_2 solid sorbents promoted by eutectic mixture(KNO_3 and LiNO_3) for elevated temperature CO_2 sorption. The developed sorbents show improved CO_2 sorption capacity, which may be attributed to the alternative CO_2 sorption pathway provided by the ionization of highly dispersed MgO in the eutectic mixture. The MgO-TiO_2 framework was also shown to assist in retaining the MgO configuration by constraining its interaction with CO_2. Furthermore, it is demonstrated that constructing composite structures is essential to improve the CO_2 sorption characteristics,mainly recyclability, at elevated temperatures. The developed promoter integrated sorbents showed exceptionally high CO_2 sorption capacity of 30 wt.% at an elevated temperature(300°C) with pronounced stability under temperature swing operation.  相似文献   

9.
Comprehensive reviews of the plant science literature indicate that a 300 part per million (ppm) increase in atmospheric carbon dioxide (CO2) concentration generally increases plant growth by approximately 30%. Working with two species of floating aquatic plants and three terrestrial species, we demonstrate that this stimulatory effect of atmospheric CO2 enrichment is strongly temperature dependent. Indeed, our results suggest that for a 3°C increase in mean surface air temperature (as is generally predicted to result from the ‘greenhouse effect’ of such an increase in the CO2 content of the air), the growth enhancement factor for such a CO2 increase rises from 1.30 to 1.56. If the non-CO2 trace gas greenhouse effect is equally as strong, as recent model studies suggest, the growth enhancement factor rises still higher to a value of 1.85. On the other hand, our results also indicate that atmospheric CO2 enrichment tends to reduce plant growth at relatively cold air temperatures, i.e. below a daily mean air temperature of approximately 18.5°C. As a result, predicting the ultimate biospheric consequences of a doubling of the Earth's atmospheric CO2 concentration may prove to be much more complex than originally anticipated.  相似文献   

10.
Particles generated in the exhaust of a spark-ignition engine operated with leaded and unleaded fuel exhibit significant changes of size, structure and surface chemical composition on changing the temperature T of the carrier gas.Total mass, mass of black carbon (BC), diameter and the photoelectric yield of the particles have been measured in situ as a function of temperature. Concomitantly the particles have also been deposited on a substrate and imaged by transmission electron microscopy.Diameter and total mass of the particles decrease significantly with increasing T, whereas the BC mass remains nearly unaffected. From diameter and photoyield vs T curve a shell structure of the particles emerges, where the outermost shell is made up of volatile organic components followed by a layer of polycyclic aromatic hydrocarbons (PAHs) with less volatility on a core of BC and, depending on the type of fuel, also lead. Transmission electron micrographs indicate that lead and carbonaceous fractions segregate at T = 275°C. For T > 275°C and almost perfect crystalline order of lead appears.  相似文献   

11.
Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6–7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm2 (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety.  相似文献   

12.
In this paper, KMnO4 was used to pre-treat Co3Fe-layered double hydroxides (LDH) precursor to prepare MnO2 decorated Co3Fe1Ox catalyst. The toluene oxidation performance of the catalyst was investigated systematically. The optimized 0.1MnCF-LDO catalyst exhibited the best catalytic performance, and the temperatures of 50% and 90% toluene conversion (T50 and T90) were 218 and 243°C, respectively. The apparent activation energy (Ea) was 31.6 kJ/mol. The characterization results showed that the pre-redox reaction by KMnO4 could increase the specific surface area, Co3+ species amount and oxygen defect concentration of the catalyst, which are the main reason of the improved toluene catalytic activity. Besides, this method was also applied to enhance toluene oxidation of iron mesh based monolithic catalyst. The 0.1MnCF-LDO/Iron mesh (IM) catalyst showed a 90% toluene conversion at around 316°C which was much lower than that of without MnO2 addition (359°C). In addition, the water resistant of all the catalysts was studied as well, all the samples showed relatively good water resistance. The toluene conversion still remained to be over >80% even in the presence of 10 vol.% water vapor.  相似文献   

13.
Phallotoxins bind to filamentous actin (F-actin) from liver or rabbit muscle with K diss~10?8 M. By this combination the structure of F-actin is stabilized to such an extent that it will be resistant to the depolymerizing action of 0.6M KI and of deoxyribonuclease I, to denaturation by heat (70 °° C), and to local ruptures caused by ultrasonication or by cytochalasin B. The structural features of phallotoxins essential for affinity to F-actin are specific.  相似文献   

14.
A series of CeO_2–ZrO_2–WO_3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH_3 over a wide temperature of 150–550°C.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H_2O.The fresh catalyst showed above 90% NO_x conversion at 201–459°C,which is applicable to diesel exhaust NO_x purification(200–440°C).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300°C),while the activity was notably enhanced at high temperature(above 450°C).The aged CZW catalyst(hydrothermal aging at 700°C for 8 hr)showed almost 80% NO_x conversion at 229–550°C,while the V_2O_5–WO_3/TiO_2 catalyst presented above 80% NO_x conversion at 308–370°C.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO_2–ZrO_2 solid solution,amorphous WO_3 phase and optimal acidity.In addition,the formation of WO_3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.  相似文献   

15.
Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%–83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level.  相似文献   

16.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.  相似文献   

17.
Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide (TPAOH) solution with different concentration. The hierarchical pore structure formed during the desilication process facilitates the dispersion of Pt nanoparticles and Pt/ZSM-5 catalysts exhibit rather high catalytic activity for the deep oxidation of various VOCs at low temperature. The catalyst treated with TPAOH of 0.1 mol/L (Pt/ZSM-5(0.1)) shows the lowest degradation temperature (T90%) of 128 and 142°C, respectively for benzene and n-hexane. Compared with the untreated Pt/ZSM-5 catalyst, the abundant mesopores, small Pt particle size and finely dispersed Pt contribute to the superior catalytic activity and stability of the Pt/ZSM-5 catalysts for VOCs removal. More importantly, the existence of H2O in the feed gases hardly affected the activity of Pt/ZSM-5(0.1) catalyst at the low reaction temperature of 128°C, which is very important for VOCs low-temperature removal in the future practical applications.  相似文献   

18.
Breeding of golden hamsters is classically performed at thermal conditions ranging from 20 to 24 °C. However, growing evidence suggests that lactating females suffer from heat stress. We hypothesised that shaving females dorsally to maximise heat dissipation may reduce stress during reproduction. We thus compared faecal cortisol metabolites (FCM) from shaved golden hamster mothers with those from unshaved controls. We observed significantly lower FCM levels in the shaved mothers (F1,22?=?8.69, p?=?0.0075) pointing to lower stress due to ameliorated heat dissipation over the body surface. In addition, we observed 0.4 °C lower mean subcutaneous body temperatures in the shaved females, although this effect did not reach significance (F1,22?=?1.86, p?=?0.18). Our results suggest that golden hamsters having body masses being more than four times that of laboratory mice provide a very interesting model to study aspects of lactation and heat production at the same time.  相似文献   

19.
Investigation of the effects of pre-pressurization temperature on the high-pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus-1 (HPeV) was performed. For CAV9, an average 1.99 log10 greater inactivation was observed at 4 °C after a 400-MPa–5-min treatments compared to 20 °C treatments. For CBV5, an average of 2.54 log10 greater inactivation was noted after 600-MPa–10-min treatments at 4 °C in comparison to 20 °C treatments. In contrast, inactivation was reduced by an average of 1.59 log10 at 4 °C for HPeV. AiV was resistant to pressure treatments of 600 MPa for as long as 15 min at 4, 20, and 30 °C temperatures. Thus, different pre-pressurization temperatures result in different inactivation effects for picornaviruses.  相似文献   

20.
Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum (Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2?±?1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号