首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dialdehyde starch (DAS) and zein, a hydrophobic corn protein, were investigated to produce biodegradable plastics with improved water resistance and mechanical properties. In the study, dialdehyde starch and zein ratio, plasticizers, and degree of starch oxidation were examined. Increased molding temperature and level of starch oxidation decreased water absorption of the plastic. Tensile strength and Young's modulus increased with starch oxidation. The biodegradation of starting materials and ground plastic specimens was studied in aerobic soil reactors maintained at 25°C for 180 days. Biodegradation of corn starch, zein, and dialdehyde starch for 180 days produced CO2 equivalent to 64, 63, and 10% of theoretical carbon, respectively. Specimens of molded DAS and zein (3 : 1) plastic showed accelerated CO2 evolution compared to DAS and other raw materials alone. By 180 days, specimens made with starch of low oxidation (1 and 5% oxidized) demonstrated a 60% biodegradation, and specimens with highly oxidized starch (90% oxidized) achieved 37% biodegradation.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.Journal Paper J-15927 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Project No. 3258.  相似文献   

2.
Most of the starch in starch-polyethylene-co-acrylic acid (EAA)-polyethylene (PE) composites prepared by injection molding was not accessible to starch-hydrolyzing enzymes. Even when these composites were treated with enzyme in the presence of Triton X-100 for 96 h, little starch hydrolysis was observed. However, when the starch-plastic material was pulverized, both the extent and the rate of starch hydrolysis increased dramatically, with about 70% hydrolysis of the starch within 18 h. Reactions carried out for up to 96 h showed that, while the enzyme was active, the reaction reached a plateau, achieving a total of 80% starch hydrolysis. Fourier transform infrared (FTIR) spectroscopy revealed that only starch, and not EAA or PE, was affected by enzyme in pulverized samples. Results indicated that while 80% of the starch in these composites was transiently inaccessible, perhaps due to EAA and PE forming an impermeable barrier to the enzyme, the other 20% remained inaccessible to enzymes. Also, the rate of starch digestion as determined by solubilized reducing sugar correlated with the particle size of the pulverized material, suggesting that a large available surface area is critical for rapid starch degradation in such composites.The mention of firms names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over the firms or similar products not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.  相似文献   

3.
The structural and mechanical properties of extruded high-amylose and normal cornstarch were studied as a function of time and humidity to determine the suitability of high-amylose cornstarch for use in biodegradable plastic materials. After extrusion at 170°C and 20–30% moisture, high-amylose starch was mostly amorphous, with small amounts of V- and A-type crystal structures. Tensile strengths for the extruded high-amylose starch ribbons were rather stable with time (65, 50, and 35 MPa at 20, 50, and 80% RH) and were higher than those for normal cornstarch (25, 40, and 15 MPa after 84 days at 20, 50, and 80% RH). Elongations at break declined gradually with time for high-amylose starch (6, 11, and 11% after 84 days at 20, 50, and 80% RH), while rapid declines were seen for normal cornstarch at higher humidities (3, 9, and 3% after 84 days at 20, 50, and 80% RH). Differential scanning calorimetry revealed that normal cornstarch aged at a high humidity had much larger sub-T g endotherms than high-amylose cornstarch. These endotherms reflect decreases in enthalpy and free volume which occur in amorphous polymers due to structural relaxation. It appears, therefore, that plastic materials prepared from gelatinized or melted high-amylose cornstarch should have greater strength and flexibility and slower physical aging than those prepared from gelatinized normal cornstarch.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
Extruded films of plasticized starch were doped with metal halides to produce solid ion-conducting materials. The electrical conductance of the material increased from 10–11 to 10–6 Siemens/cm. The type and amount of dopant affects the conductance of the material. Although the materials are moisture sensitive, water content does not have a significant effect on the conductance of doped films. Mechanical properties of doped films indicate that the starch is plasticized and that the ion-conducting material is strong and tractable. Unlike intrinsically conductive polymers, electroactive starch materials can be extruded in thin films or molded into any shape.  相似文献   

5.
The insulative character of expanded polystyrene loose-fill packing material supports the immobile triboelectric charge on its surface, causing static cling. One beneficial property of starch-based loose-fill is its antistatic behavior, which prevents the buildup of electrostatic charges on the foam surface, resulting in no static cling. This investigation explores the electrical resistance characteristics of plasticized starch materials such as commercial loose-fill. Electrical resistance standards used in this study to measure surface resistance and static decay properties are ASTM D 257-78, EOS/ESD S-11, and EIA 541. Following these established testing protocols, the electrical resistance of starch-based and expanded polystyrene loose-fill is quantified. Surface resistivity, measured at 12% RH, of starch-based loose-fill products is less than 1.0×1012 per square characteristic of inherently static dissipative materials.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may be suitable.Presented at the 1995 International Chemical Congress of Pacific Basin Societies, Symposium onEnvironmental Polymer Biodegradation, December 17–22, 1995, Honolulu, Hawaii, USA.  相似文献   

6.
Polyvinyl alcohol (PVA) and starch are both biodegradable polymers. These two polymers can be prepared as biodegradable plastics that are emerging as one of the environmental friendly materials available now. In this study, after reacting with sodium trimetaphosphate (STMP), modified corn starch was blended with PVA in different ratios by a barbender. Test samples were prepared for mechanical and thermal properties measurements. The surface roughness and morphology of fractured surface of the samples were observed by an atomic force microscopy (AFM) and scanning electron microscope (SEM) measurements. Aqueous degradation by enzyme, water absorption and biodegradability behavior were evaluated for the degradability. The biodegradability of these materials was followed by bio-reactivity kinetics models. Results showed that the addition of modified starch could enhance its water uptake. With an addition of 20 wt% of modified starch, the blend had a maximum weight loss during enzymatic degradation. It was found that the degradability was enhanced with the addition of the starch. Analyzing the results of the biodegradability based on the kinetic models, the growth rate of the microorganism was found to be increasing with the increase of the content of starch in the PVA/starch blends in the first order reaction fashion. In our biodegradability analysis, i.e., based on the China national standards (CNS) 14432 regulations, we estimated the decomposition behavior based on the mentioned first order reaction. We found that the PVA/starch blends would take 32.47, 16.20 and 12.47 years to degrade by 70% as their starch content 0, 20 and 40 wt%, respectively.  相似文献   

7.
Transmitted light measurements performed with a UV-visible spectrophotometer were used to characterize how starch affects the position of boundaries on the phase diagram for dilute aqueous solutions of levan (a branched polymer of fructose). Data were collected in the range 15 to 70°C; the minimum concentrations required for separation of a nematic phase and the minimum concentration required for a fully nematic solution were identified within this range. While hard interactions (repulsion between rod-like molecular segments) dictate the formation of a liquid crystalline phase at and above ambient temperature in the absence of starch, soft interactions become more significant as solutions are cooled toward ambient when starch is present. Small amounts of starch might be used as a filler to modify the mechanical properties (while retaining the process-related benefits) of levan films cast from liquid crystalline solution.  相似文献   

8.
The rheological behavior of biodegradable blends of starch and poly(vinyl alcohol) (PVOH) was measured as a function of temperature, shear rate, and moisture content using a capillary rheometer. An excellent correlation was found with a rheological model which was used as a means to characterize the influence of starch/PVOH content as well as a qualification of the viscosity for simulation studies. This model consisted of a power law dependence on shear rate, an Arrhenius dependence on temperature, and an exponential dependence on moisture.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.Guest Editor: Dr. Randall Shogren, USDA.  相似文献   

9.
Starch-based composite films have been proposed as food packaging. In this context, the study of non-conventional starch sources (sagu, Canna edulis Kerr) has worldwide special attention, because these materials can impart different properties as carbohydrate polymers. A thorough study of the matrices used (sagu starch and flour) was carried out. In the same way, thermoplastic starch (TPS)/PCL blend and thermoplastic flour (TFS)/PCL blend were obtained by melt mixing followed by compression moulding containing glycerol as plasticizer. In this study, chemical composition of the matrices and their properties were related with the properties of the developed films. Moisture content, water solubility, X-ray diffraction, thermogravimetric analysis and mechanical and microstructural properties were evaluated in the films. Taking into account the results, the sagu flour has great potential as starchy source for food packaging applications. However, concretely the flour had lower compatibility with the PCL compared to the starch/PCL blend.  相似文献   

10.
Preparation of starch esters   总被引:3,自引:0,他引:3  
A review of starch esters prepared from either aqueous or solvent-based reactions leading to high (3.0)- and/or low (<0.2)-degree of substitution (DS) derivatives are discussed. A novel process for making intermediate-DS (0.5–1.8) starch esters from aqueous media is compared to traditional methods.  相似文献   

11.
Injection-molded composites were prepared by blending PHBV5 with native cornstarch (30% and 50%) and with cornstarch precoated with PEO as a binding agent. These composites were evaluated for their biodegradability in municipal activated sludge by measuring changes in their physical and chemical properties over a period of 35 days. All composites lost weight, ranging from 45 to 78% within 35 days. Interestingly, the extent and rate of weight loss were quite similar in PHBV composites with no starch, with 30% starch, and with 50% starch. Weight loss was slowest in PHBV blends prepared with PEO-coated starch. For all samples, the weight loss was accompanied by a rapid deterioration in tensile strength and percentage elongation. The deterioration of these mechanical properties exhibited a relative rate of PHBV>starch-PHBV>PEO-coated starch-PHBV. Changes in starch/PHBV composition after biodegradation were quantified by FTIR spectroscopy. Increasing the starch content resulted in more extensive starch degradation, while the PHBV content in the blends became less susceptible to hydrolytic enzymes.The mention of firms names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over firms or similar products not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.  相似文献   

12.
A microwave technique was used to prepare foams from different potato starches in granular form, with varying amounts of amylose content, and water. In addition to native potato starch (PN), high amylose potato starch (HAP) and potato amylopectin (PAP) were used, as well as mixtures thereof. In all cases the native crystallinity of starch granules was lost upon microwave treatment and an amorphous material was created. An increased concentration of starch in the initial water dispersion resulted in a less dense foam structure. The potato amylopectin formed open cell foams, whereas increased amylose content, as in native potato starch, yielded a more compact structure with irregular pore shapes. The high amylose potato starch yielded a structure with hardly any porosity. Foaming experiments were done to compare pre-gelatinized and granular starches dispersed in water. The pre-gelatinisation did not affect the pore formation process. These experiments indicated that the molecular architecture of starch polymers is more important for foam formation than starch polymer organization in the granules. Studies of temperature profile and dry matter content during microwave treatment showed that water evaporates more rapidly from a high amylose starch solution than native potato starch and potato amylopectin solutions. Rheological measurements showed that the amylose solution had much lower viscosity than starch and amylopectin. This confirms that polymer – water interaction, such as in amylopectin solution, favours stabilization of bubbles formed upon boiling and evaporation of water, which yields high porosity materials.  相似文献   

13.
In vitro digestibility of 10 polymers was studied. Only starch, starch blend, gelatin, and silk were more than 10% digested by the enzyme cocktail. Cellophane, polyhydroxy--valerate, pullulan, levan, shellac, ethylene vinyl alcohol, and polyethylene were less than 10% digestible. The implications from these data are that these materials would act physiologically as dietary fiber or residue.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

14.
The physical properties of corn starch loose-fill were examined at various relative humidities (r.h.). After 48 h of storage at both 25 and 50% r.h., only a slight change in the dimension and physical properties of the corn starch loose-fill was apparent. A wet environment (75% r.h. for 48 h), however, caused significant shrinkage and the loss of physical properties. The tensile properties, particularly tensile modulus, sharply increased, while the resilience gradually decreased with storage time. Amorphous X-ray diffraction patterns of corn starch loose-fills were transformed into crystalline patterns due to aging at 75% r.h. after 48 h. These changes were attributed to the structural relaxation, which was accelerated by moisture gain. The T g of corn starch loose-fill decreased with increasing the moisture content in expanded starch. Our proposed model based on Avrami equation was able to describe the time-dependent recrystallization of corn starch by modifying the time-dependent tensile modulus. The growth parameter (n) and time constant (k) for the recrystallization process of corn starch loose-fill were about 3.2 and 8.87 × 10–18 s–1, respectively. If the growth parameter of 3.2 is considered, spherulitic growth of crystallization occurred in the corn starch loose-fill in the wet environment.  相似文献   

15.
Reaction of granular potato starch with urea and biuret resulted in the formation of products, which were soluble neither in cold nor boiling water. The net reaction was a monosubstitution of the hydrogen atom in one hydroxyl group in each D-glucose unit of starch with the either CO–NH2 or CO–NH–CO–NH2 moiety, respectively. Properties of the products, particularly these with urea, depended on the mode of reaction. Reactions were carried out in the microwave oven as well as with convection heating. The products retained the granular form of starch but a vast majority of granules were damaged. -Amylolysis of those materials revealed that their susceptibility to the enzyme increasing in the order: starch-amylolysis with simultaneous insolubility in water make these products suitable as ruminant fodder and, eventually, biodegradable material.  相似文献   

16.
In order to assess feasibility of tropical starches (sago and cassava starches) as biodegradable plastic materials, blending with poly(-caprolactone) (PCL), a biodegradable polymer, was carried out. It was confirmed that the physical properties (tensile strength and elongation) of PCL/sago and PCL/cassava blends were similar to those of PCL/corn blend, suggesting that sago and cassava starches can also be blended with PCL for production of biodegradable plastic. However, the properties of all PCL/starch blends were still low compared with those of polyethylene. Enzymatic degradability evaluation showed that lipase degradation of PCL and-amylase degradation of starch increased as the starch content in the blend increased. Burial test of the blends for 1, 3, and 5 months was carried out and the rate of degradation of the PCL/sago blend was confirmed to be slower than those of PCL/corn and PCL/cassava blends. Observation of the film blends structure by scanning electron microscope revealed that the starch was dispersed in a PCL continuous phase. Furthermore, changes in the film surface before and after enyzme treatments were observed.  相似文献   

17.
Application of Cellulose Microfibrils in Polymer Nanocomposites   总被引:1,自引:0,他引:1  
Cellulose microfibrils obtained by the acid hydrolysis of cellulose fibers were added at low concentrations (2–10% w/w) to polymer gels and films as reinforcing agents. Significant changes in mechanical properties, especially maximum load and tensile strength, were obtained for fibrils derived from several cellulosic sources, including cotton, softwood, and bacterial cellulose. For extruded starch plastics, the addition of cotton-derived microfibrils at 10.3% (w/w) concentration increased Young’s modulus by 5-fold relative to a control sample with no cellulose reinforcement. Preliminary data suggests that shear alignment significantly improves tensile strength. Addition of microfibrils does not always change mechanical properties in a predictable direction. Whereas tensile strength and modulus were shown to increase during addition of microfibrils to an extruded starch thermoplastic and a cast latex film, these parameters decreased when microfibrils were added to a starch–pectin blend, implying that complex interactions are involved in the application of these reinforcing agents.  相似文献   

18.
The present investigation was undertaken to characterize the biodegradation pattern of chemically modified starch films. Chemically modified starch films obtained by esterification of the hydroxyl groups of the polysaccharide have shown lower water sorption than native starch films, being therefore more attractive for a number of processing applications. However, no systematic study characterizing their biodegradation behavior and comparing it with the degradation pattern of native starch films has still been published. In the current contribution we characterized the enzymatic degradation pattern of three derivatized starch films by use of a commercial α-amylase from Bacillus licheniformis. Optimum degradation conditions were chosen upon assaying the effect of enzyme load and temperature on the reaction course of native starch films. Under the conditions selected, comparison of different derivatization procedures revealed that the starch film modified with octanoyl chloride was enzymatically hydrolyzed at a much higher rate than native starch film. Maleated starch films also showed higher susceptibility to α-amylolytic hydrolysis than native starch, whereas acetylated starch showed a hydrolysis pattern similar to that of native starch. Differences in degradation rates of chemically modified films were explained in terms of their amylose content which promotes dense networks that hinder the access of starch-degrading enzymes.  相似文献   

19.
We examined the metabolic response of an estuarine benthic community to additions of three materials being considered for use in manufacture of biodegradable substitutes for plastics. Diver-collected cores containing benthos were dosed with 59 g/m2 of three test materials, cornstarch, a bacterial polyester (PHBV), and ethylene vinyl alcohol (EVOH), or left undisturbed as controls. Fluxes of dissolved nutrients (ammonia, nitrate + nitrite, phosphate, silica) and dissolved inorganic carbon (DIC) were similar in control cores and cores dosed with EVOH during a 1-month test period at 20°C. Fluxes in cores dosed with starch and PHBV differed significantly from controls but not from each other. After 2 weeks of incubation, production of DIC was higher in cores containing starch and PHBV, while efflux of ammonia, nitrate, and nitrite was reduced. After 4 weeks of incubation, production of DIC was similar among all treatments and controls, while efflux of ammonia was high in the starch- and PHBV-containing cores compared to controls and cores with EVOH. Fluxes of silica and phosphate were similar in all cores during the experiment. These results indicate that both starch and PHBV are carbon-rich substrates readily metabolized by the benthic community but that their presence significantly alters normal nutrient exchange patterns. This response is expected because of the high carbon-to-nitrogen ratio of starch and PHBV and indicates that impacts of these two materials would be similar. However, the high biological oxygen demand of such materials and resulting disturbance of normal nutrient regeneration patterns of the benthos (delayed ammonia efflux and potential stimulation of denitrification) must be considered in developing strategies for their disposal.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

20.
The recently isolatedPseudomonas sp. A33 was investigated for the production of a highly unsaturated polyhydroxyalkanoate (PHA) containing various alkyl and alkenyl pendent groups from 1,3-butanediol in a cell-recycle fed-batch production mode. The monomer composition and degree of unsaturation in PHA were dependent on the environmental conditions. The production temperature markedly influenced the content, composition, and degree of unsaturation of PHA. As the production temperature decreased from 30 to 10°C, the degree of unsaturation and content of PHA were increased, while the mole percentage of 3-hydroxybutyrate (3HB) was decreased. These temperature effects on the composition of PHA imply that the production can be used as a control variable for the biosynthesis of a highly unsaturated PHA and for the specific regulation of the composition of PHA. The biosynthetic pathway for a highly unsaturated PHA which is based on de novo fatty acid biosynthetic pathway is proposed. For the enhanced production of this functional PHA, a high cell density was achieved by cell-recycle continuous culture at 30°C, and then a large amount of PHA was accumulated at 15°C by fed-batch addition of the feeding solution containing excess 1,3-butanediol. The structures of monomer constituents of polymer were confirmed by gas chromatography—mass spectrometric analysis of trimethylsiyl derivatives of 3-hydroxyalkanoic acids methyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号