首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zn tissue accumulation in Solanum nigrum grown in a non-contaminated and a naturally contaminated Zn matrix and the effect of inoculation with different arbuscular mycorrhizal fungi (AMF) on metal uptake were assessed. S. nigrum grown in the contaminated soil always presented higher Zn accumulation in the tissues, accumulating up to 1622 mg Zn kg(-1). The presence of both Glomus claroideum and Glomus intraradices enhanced the uptake and accumulation of Zn by S. nigrum (up to 83 and 49% higher Zn accumulation, respectively). The main deposits of the metal were found in the intercellular spaces and in the cell walls of the root tissues, as revealed by autometallography, with the inoculation with different AMF species causing no differences in the location of Zn accumulation. These findings indicate that S. nigrum inoculated with selected heavy metal tolerant AMF presents extracting and accumulating capacities, constituting a potentially suitable remediation method for Zn polluted soils.  相似文献   

2.
Zn accumulation in Solanum nigrum grown in naturally contaminated soil in the presence of different types of organic amendments was assessed. Under the same conditions, the response of the plant to inoculation with two different isolates of arbuscular mycorrhizal fungi (AMF) (Glomus claroideum and Glomus intraradices) was also evaluated. S. nigrum grown in the non-amended soil always presented higher Zn accumulation in the tissues, with the addition of amendments inducing reductions of up to 80 and 40%, for manure and compost, respectively, and enhancing plant biomass yields. The establishment of S. nigrum in the Zn contaminated soil combined with the application of amendments led to a 70-80% reduction in the amount of Zn leached through the soil. The use of S. nigrum in combination with manure appeared as an effective method for reducing the effects of soil contamination, diminishing Zn transfer to other environmental compartments via percolation.  相似文献   

3.
The effect of two different chelating agents [EDTA and EDDS (S,S-ethylenediaminedissucinic acid)] on Zn tissue accumulation in Solanum nigrum L. grown in a naturally contaminated soil was assessed. Under those conditions, the response of the plant to the inoculation with two different isolates of arbuscular mycorrhizal fungi (AMF)--Glomus claroideum and Glomus intraradices--was also studied. Plants grown in the local contaminated soil (Zn levels of 433mg kg(-1)) accumulated up to 1191mg kg(-1) of Zn in the roots, 3747mg kg(-1) in the stems and 3409mg kg(-1) in the leaves. S. nigrum plants grown in the same soil spiked with extra Zn (Zn levels of 964mg kg(-1)) accumulated up to 4735, 8267 and 7948mg Zn kg(-1) in the leaves, stems and roots, respectively. The addition of EDTA promoted an increase in the concentration of Zn accumulated by S. nigrum of up to 231% in the leaves, 93% in the stems and 81% in the roots, while EDDS application enhanced the accumulation in leaves, stems and roots up to 140, 124 and 104%, respectively. In the stems, the presence of Zn was predominantly detected in the cortex collenchyma cells, the starch sheath and the internal phloem and xylem parenchyma, and the addition of chelating agents did not seem to have an effect on the localisation of accumulation sites. The devise of a chelate-enhanced phytoextraction strategy, using chelating agents and AMF, is discussed.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) may play an important role in phytoremediation of As-contaminated soil. In this study the effects of AMF (Glomus mosseae, Glomus intraradices and Glomus etunicatum) on biomass production and arsenic accumulation in Pityrogramma calomelanos, Tagetes erecta and Melastoma malabathricum were investigated. Soil (243 +/- 13 microg As g(-1)) collected from Ron Phibun District, an As-contaminated area in Thailand, was used in a greenhouse experiment. The results showed different effects of AMF on phytoremediation of As-contaminated soil by different plant species. For P. calomelanos and T. erecta, AMF reduced only arsenic accumulation in plants but had no significant effect on plant growth. In contrast, AMF improved growth and arsenic accumulation in M. malabathricum. These findings show the importance of understanding different interactions between AMF and their host plants for enhancing phytoremediation of As-contaminated soils.  相似文献   

5.
Chen XH  Zhao B 《Chemosphere》2007,68(8):1548-1555
A glasshouse experiment was carried out to study the effect of mycorrhizal formation by Gigaspora margarita, Glomus intraradices or Acaulospora laevis on plant growth and lanthanum (La) uptake of Astragalus sinicus L. in soils spiked with La at five levels (0, 1, 5, 10 and 20 mg kg(-1)). La application decreased mycorrhizal infection frequency and activity of fungal succinate dehydrogenase and alkaline phosphatase. Increasing La concentrations in soil led to increased La accumulation in tissues of both mycorrhizal and non-mycorrhizal plants, but inoculation with Gig. margarita or G. intraradices reduced La concentrations in shoots and roots at higher concentrations of La in the soil. Plant biomass and P concentrations in shoots and roots were reduced by La application, but increased by inoculation with Gig. margarita or G. intraradices. The results showed that appropriate AM fungi colonization could be effective in alleviating La toxicity in A. sinicus.  相似文献   

6.
Chen BD  Zhu YG  Smith FA 《Chemosphere》2006,62(9):1464-1473
A glasshouse experiment was conducted to investigate U and As accumulation by Chinese brake fern, Pteris vittata L., in association with different arbuscular mycorrhizal fungi (AMF) from a U and As contaminated soil. The soil used contains 111 mg U kg(-1) and 106 mg As kg(-1). P. vittata L. was inoculated with each of three AMF, Glomus mosseae, Glomus caledonium and Glomus intraradices. Two harvests were made during plant growth (two and three months after transplanting). Mycorrhizal colonization depressed plant growth particularly at the early stages. TF (transfer factor) values for As from soil to fronds were higher than 1.0, while those for roots were much lower. Despite the growth depressions, AM colonization had no effect on tissue As concentrations. Conversely, TF values for U were much higher for roots than for fronds, indicating that only very small fraction of U was translocated to fronds (less than 2%), regardless of mycorrhizal colonization. Mycorrhizal colonization significantly increased root U concentrations at both harvests. Root colonization with G. mosseae or G. intraradices led to an increase in TF values for U from 7 (non-inoculation control) to 14 at the first harvest. The highest U concentration of 1574 mg kg(-1) was recorded in roots colonized by G. mosseae at the second harvest. The results suggested that P. vittata in combination with appropriate AMF would play very important roles in bioremediation of contaminated environments characterized by a multi-pollution.  相似文献   

7.
The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts.  相似文献   

8.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

9.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

10.
We investigated the relationship of the zonal pattern followed by the vegetation in a polluted Mediterranean salt marsh, in semiarid south-eastern Spain, with the microbiological and biochemical properties (labile C fractions, oxidoreductases and hydrolases) of the rhizosphere soil of two halophyte species, Arthrocnemum macrostachyum and Sarcocornia fruticosa, and with the degree of arbuscular mycorrhizal (AM) colonisation in their rhizospheres. Levels of plant biomass and cover were inversely related to heavy metal contents and salinity. The concentrations of Fe, Cu, Mn and Pb extracted with DTPA hardly varied among the different zones of the salt marsh. The dehydrogenase and phosphatase activities, the soluble C and water-soluble carbohydrates concentrations and the extent of root colonisation were greater in the salt marsh zones of lower soil salinity and lower metal concentration. Urease and beta-glucosidase activities were not detected in the salt marsh. Plant biomass and cover showed positive relationships with mycorrhizal colonisation (R=0.773, P<0.001; R=0.874, P<0.001, respectively). Mycorrhizal colonisation was negatively correlated with the contents of Pb and Zn in plant tissues. This work supports the view that reduced plant uptake of toxic metals, particularly lead, could be involved in the beneficial effects of AM fungi on plant development in Mediterranean salt marshes contaminated with mining wastes.  相似文献   

11.
Elemental uptake and arbuscular mycorrhizal (AM) colonisation were studied during the life cycle of field collected Cd/Zn hyperaccumulating Thlaspi praecox (Brassicaceae). Plant biomass and tissue concentrations of Cd, Pb, Zn, Fe and Ni were found to vary during development, while no variation in P, K, Ca, Mn and Cu tissue concentrations were observed. The lowest Cd bioaccumulation in rosette leaves (BAF(RL)) observed during seeding was partially attributed to lower translocation from roots to rosette leaves and partially to high translocation to stalks, indicating a high Cd mobility to reproductive tissues, in line with our previous studies. The highest intensity of AM colonisation (M%) was observed in the flowering phase and was accompanied by increased root Cd, Zn, Pb and Fe contents. In addition, a positive correlation between AM colonisation and Fe contents in rosette leaves was found. The results indicate developmental dependence of AM formation, accompanied by selective changes in nutrient acquisition in T. praecox that are related to increased plant needs, and the protective role of AM colonisation on metal polluted sites during the reproductive period.  相似文献   

12.
Significant hyperaccumulation of Zn, Cd and Pb in field samples of Thlaspi praecox Wulf. collected from a heavy metal polluted area in Slovenia was found, with maximal shoot concentrations of 14,590 mg kg(-1) Zn, 5960 mg kg(-1) Cd and 3500 mg kg(-1) Pb. Shoot/root ratios of 9.6 for Zn and 5.6 for Cd show that the metals were preferentially transported to the shoots. Shoot bioaccumulation factors exceeded total soil Cd levels 75-fold and total soil Zn levels 20-fold, further supporting the hyperaccumulation of Cd and Zn. Eighty percent of Pb was retained in roots, thus indicating exclusion as a tolerance strategy for Pb. Low level colonisation with arbuscular mycorrhizal fungi (AMF) of a Paris type was observed at the polluted site, whereas at the non-polluted site Arum type colonisation was more common. To our knowledge this is the first report of Cd hyperaccumulation and AMF colonisation in metal hyperaccumulating T. praecox.  相似文献   

13.
重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响   总被引:6,自引:1,他引:5  
采用盆栽实验的方法,研究了重金属(包括Cu、Zn、Pb和Cd)复合污染和接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)Glomus mosseae对蚕豆(Vicia faba)生长及DNA损伤的影响.结果表明,虽然接种菌根真菌对蚕豆生物量的影响并不显著,但是却显著影响植物对重金属的吸收,接种菌根真菌对蚕豆吸收4种重金属元素的作用有差异.采用单细胞凝胶电泳(single cell gel electrophoresis,SCGE)法研究接种菌根真菌对蚕豆叶片的DNA损伤的影响,与重金属吸收的结果相吻合.结果表明,接种处理可显著增加蚕豆叶片的DNA损伤程度,这与接种处理可提高植物的重金属吸收相一致.  相似文献   

14.
An experiment was conducted to determine the extent to which rhizobia, mycorrhizal fungi, and anions in simulated rain affect plant growth response to acid deposition. Germinating subterranean clover seeds were planted in steam-pasteurized soil in pots and inoculated with Rhizobium leguminosarum, Glomus intraradices, Glomus etunicatum, R. leguminosarum + G. intraradices, R. leguminosarum + G. etunicatum, or no microbial symbionts. Beginning 3 weeks later, plants and the soil surface were exposed to simulated rain in a greenhouse on 3 days week(-1) for 12 weeks. Rain solutions were deionized water amended with background ions only (pH 5.0) or also adjusted to pH 3.0 with HNO3 only, H2SO4 only, or a 50/50 mixture of the two acids. Glomus intraradices colonized plant roots poorly, and G. intraradices-inoculated plants responded like nonmycorrhizal plants to rhizobia and rain treatments. Variation in plant biomass attributable to different rain formulations was strongest for G. etunicatum-inoculated plants, and the effect of rain formulation differed with respect to nodulation by rhizobia. The smallest plants at the end of the experiment were noninoculated plants exposed to rains (0.38 g mean dry weight total for 3 plants pot(-1)). Among nonnodulated plants infected by G. etunicatum, those exposed to HNO3 rain were largest, followed by plants exposed to HNO3 + H2SO4, pH 5.0, and H2SO4 rain, in that order. Among plants inoculated with both R. leguminosarum + G. etunicatum, however, the greatest biomass occurred with pH 5.0 rains, resulting in the largest plants in the study (1.00 g/3 plants). Treatment-related variation among root and shoot biomass data reflected those for whole-plant biomass. Based on quantification of biomass and N concentrations in shoot and root tissues, total N content of plants inoculated with G. etunicatum alone and exposed to the HNO3 + H2SO4 rains was approximately the same as plants inoculated with R. leguminosarum + G. entunicatum and exposed to pH 5 rains. Thus, the acid-mixture rains and rhizobia under no acid deposition provided approximately equal amounts of N in biomass. The significant interactions among rain formulation and the symbiotic status of the plants suggest that conclusions concerning the impact of acid deposition on plants in the environment cannot be considered reliable because most experiments on which such assessments are based have not tested confounding influences of microorganisms and precipitation characteristics.  相似文献   

15.
Oliveira RS  Castro PM  Dodd JC  Vosátka M 《Chemosphere》2005,60(10):1462-1470
The presence of actinorhizas and arbuscular mycorrhizas may reduce plant stresses caused by adverse soil conditions. A greenhouse experiment was conducted using a sediment with a high pH, resulting from the disposal of waste originated at an acetylene and polyvinylchloride factory, in which Black alder (Alnus glutinosa) seedlings were inoculated either with Glomus intraradices BEG163 (originally isolated from the same sediment), Frankia spp. or both symbionts. After a 6-month growth period, plants inoculated with both symbionts had significantly greater leaf area, shoot height and total biomass when compared with the uninoculated control, the Frankia spp. and the G. intraradices treatments alone. In dual inoculated plants the N and P leaf content was significantly increased. A defoliation experiment was performed to evaluate the stress recovery of A. glutinosa and plants inoculated with both symbionts had a faster leaf regrowth and produced greater numbers of leaves. The dual inoculation resulted in greater numbers of and larger root nodules than when inoculated with Frankia spp. alone. The length and NADH diaphorase activity of the extraradical mycelium of G. intraradices was also significantly greater when dual inoculation was performed. The inoculation with Frankia spp. alone was shown to improve A. glutinosa growth, whereas G. intraradices alone had no positive effect under these environmental conditions. However, when the two symbionts were inoculated together a synergistic effect was observed resulting in a greater benefit for the plants and for both symbionts. The relevance of these findings for the phytorestoration of anthropogenic stressed sediments with high pH is discussed.  相似文献   

16.
In this study we investigated the interactions among plant, rhizosphere microorganisms and Zn pollution. We tested the influence of two bacterial strains isolated from a Zn-polluted soil on plant growth and on the symbiotic efficiency of native arbuscular mycorrhizal fungi (AMF) under Zn toxicity. The two bacterial strains exhibited Zn tolerance when cultivated under increasing Zn levels in the medium. However, strain B-I showed a higher Zn tolerance than strain B-II at the two highest Zn levels in the medium (75 and 100 mg l(-1) Zn). Molecular identification placed the strain B-I within the genus Brevibacillus. Our results showed that bacterial strain B-I consistently enhanced plant growth, N and P accumulation, as well as nodule number and mycorrhizal infection which demonstrated its plant-growth promoting (PGP) activity. This strain B-I has been shown to produce IAA (3.95 microg ml) and to accumulate 5.6% of Zn from the growing medium. The enhanced growth and nutrition of plants dually inoculated with the AMF and bacterium B-I was observed at three Zn levels assayed. This effect can be related to the stimulation of symbiotic structures (nodules and AMF colonization) and a decreased Zn concentration in plant tissues. The amount of Zn acquired per root weight unit was reduced by each one of these bacterial strains or AMF and particularly by the mixed bacterium-AMF inocula. These mechanisms explain the alleviation of Zn toxicity by selected microorganisms and indicate that metal-adapted bacteria and AMF play a key role enhancing plant growth under soil Zn contamination.  相似文献   

17.
A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg−1) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.  相似文献   

18.
The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining.  相似文献   

19.
In soils containing elevated levels of zinc, plant growth may be impaired because of Zn interference with P uptake by plants and because of detrimental effects of Zn toxicity itself. Because mycorrhizal fungi are known to improve uptake of plant P, the beneficial effects of mycorrhizal symbiosis on Zn tolerance of Andropogon gerardii Vitm. were assessed in soil amended with various levels of Zn and P. In the absence of P amendment, mycorrhizal fungi stimulated plant growth, but the degree of benefit depended on the inoculum source and the soil Zn level. Mycorrhizal fungi from a Zn contaminated site were more effective in increasing plant biomass at higher levels of Zn in the soil, whereas plant growth at lower levels of soil Zn was greater with mycorrhizal fungi from a non-contaminated site. Mycorrhizal fungus inoculation had no effect on shoot Zn concentration; however, inoculation significantly improved the plant P nutrition and therefore resulted in a high shoot P/Zn concentration ratio at all the soil Zn levels. To a certain extent, addition of P to the soil alleviated the Zn toxicity that had inhibited plant growth, but plant biomass tended to decrease with increasing soil Zn levels. Although P amendment improved P uptake, it also resulted in increased shoot Zn uptake.  相似文献   

20.
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号