共查询到19条相似文献,搜索用时 62 毫秒
1.
北京夏季灰霾天臭氧近地层垂直分布与边界层结构分析 总被引:5,自引:3,他引:5
后奥运时期首都北京的空气质量被更加关注,尤其是对于灰霾天与光化学复合污染的状况,而近地层数百米高度内的大气污染物与大气物理参数垂直分布观测对于空气质量变化过程评估至关重要.因此,本研究于2009年8月1-16日,在北京市325 m气象塔进行了相应的立体观测,观测平台垂直分布在距离地面高度8、47、120和280 m四层中.同时,在近地面320 m高度以内,分15层分别观测了大气温度、湿度、风速、风向.另外,使用气溶胶后向散射云高仪观测了边界层2.5 km内气溶胶后向散射系数.利用垂直分层的O3数据与边界层物理观测数据并结合天气形势、后向轨迹模式等方法,综合分析了本次观测数据之间的相互关系和内在联系.结果表明:夏季西北部低压槽控制的北京区域不利于低空大气扩散,容易形成光化学污染叠加灰霾污染,污染形成时白天地面小时最大φ(O3)可达120×10-9,280 m高度处可达155×10-9;来自西北偏西的气流一般较为干净,有利于北京污染物的清除,而来自西南和偏南的气流使北京的O3污染加重,导致区域性高浓度O3污染;在稳定天气条件下,夜间残留层与地面的φ(O3)差别越大,次日光化学生成的φ(O3)起点越高,表明残留层O3在次日混合层抬升过程中卷夹到地面,影响地面空气质量;300 m以内的近地层,在50 m高度左右存在φ(O3)变化程度剧烈层,这是城市冠层界面与大气化学反应共同作用的结果. 相似文献
2.
利用TE 4 9C型臭氧自动观测仪测定了常熟稻田上方O3 浓度 ,并利用OTC 1型开顶式气室测定了O3 浓度对水稻叶片光合速率的影响 .在此基础上建立了O3 对水稻冠层光合影响的数值模式 ,模式具有较高分辨率和准确度 .观测表明 :O3 浓度逐时值变化幅度在 0~ 16 0× 10 -9之间 ,而日平均值变化仅在 5× 10 -9~ 6 0× 10 -9范围内 ;稻田上方O3 存在高浓度单峰型和低浓度平缓型两种典型日变化 .数值分析表明 :全晴天时高浓度单峰型对光合日总量影响较大 ;随日总辐射量加大臭氧浓度增加对光合作用影响程度加强 .全生育期积分表明 :受O3 影响水稻光合作用总损失量约为 11 6 % . 相似文献
3.
大气臭氧变化对油菜影响的模拟试验 总被引:7,自引:1,他引:7
在开顶式气室中,研究了不同O3浓度(8.93×10-94.465×10-10,4.46×10-92.230×10-10,2.23×10-91.115×10s-10,≤4.46×10-910,1.12×10-9~1.79×10-9mol/L)和不同熏气天数(5,10,15,30d)处理对盆栽油菜的影响.结果表明,O3浓度升高,油菜可出现失水、畸形、叶片色斑等伤害症状.移出熏气环境后原伤害不能恢复,黄叶率显著增加,新生叶无明显伤害症状.高O3浓度短期熏气可促进油菜后期生长,对前期O3影响有补偿效应.试验还表明,增加O3浓度和延长熏气时间一般可增加叶片气孔阻力,降低气孔传导,抑制CO2吸收和水汽交换,提高叶温,降低光合速率,还可抑制根系生长,降低生物产量和经济产量,并使光合产物向各器官的分配模式发生变化. 相似文献
4.
泰山春季臭氧污染特征 总被引:1,自引:3,他引:1
采用紫外光度法,使用美国热电子公司的TECO model49c型紫外吸收式臭氧分析仪,对2004年5月泰山站的地面臭氧进行监测,以获得更具华北区域代表性的臭氧春季污染特征.结果表明:2004年5月泰山站ψ(O3)的月均值为64μL/m3,变化幅度达到53 μL/m3;其频率分布呈单峰性,主要集中于55~75μL/m3,与济南站的分散型和区域背景站Cape D'Aguilar的双峰型分布有明显的不同;泰山ψ(O3)有明显的日变化特征,变化幅度(19 μL/m3)远大于中国西部的瓦里关站,这可能与泰山处于中国东部,尽管距地面较高,但不可避免地受到区域性的污染有关. 相似文献
5.
6.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一. 相似文献
7.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一. 相似文献
8.
9.
随着我国大气污染防治工作的持续推进,颗粒物浓度逐年下降,但近地面臭氧(O3)污染问题逐渐凸显,选择江油市2016-2018年自动监测数据进行O3年际、季度、每月和小时浓度变化特征分析.江油市O3浓度逐年增加,并且具有明显的季节性特点,春季和夏季臭氧浓度偏高,每日小时平均浓度呈现单峰型分布,16时出现峰值,并且峰值浓度逐... 相似文献
10.
11.
采用AMA GC5000BTX在线色谱仪监测天津城区2012年夏季大气中苯、甲苯、乙苯、邻二甲苯和间-对二甲苯(苯系物,BTEX)的浓度,并结合其最大增量活性因子(MIR)计算各组分的最大臭氧生成潜势量.结果表明,观测期间BTEX浓度均值为38.72μg/m3,其中甲苯和间-对二甲苯浓度最高,乙苯和苯次之,邻二甲苯最低, BTEX存在明显的日变化特征,受大气光化学反应和边界层扩散能力共同影响,午后浓度最低,夜间BTEX浓度维持在较高水平,各BTEX日变化趋势一致.苯与甲苯质量浓度的比值为0.77,表明机动车排放是BTEX的主要来源,但石油化工和涂料挥发等因素也对其存在影响.经计算,间-对二甲苯的最大臭氧生成潜势量最高,甲苯、乙苯和邻二甲苯相当,苯最低, 表明BTEX中间-对二甲苯的光化学反应活性最强. 相似文献
12.
为揭示中国O3浓度的时空格局及聚集变化规律,通过对2016~2018年全国338个城市1144个监测站点的O3浓度观测数据,使用空间插值及空间自相关等方法进行分析研究.结果表明:2016~2018年全国O3浓度(第90百分位数)总体呈现上升趋势(由2016年的141.54μg/m3上升到2018年的153.21μg/m3),污染态势逐年加重,且华北及长江中下游等人口稠密地区O3浓度最高,O3浓度的空间分布呈现显著的聚集性和相似性规律,且聚集性逐年增强,O3浓度的年聚集区主要呈现北高南低的分异,高高值聚集区主要集中在北方(城市占比22.19%~29.59%),低低值聚集区则主要集中在南方(城市占比15.98%~22.19%),此外,O3浓度高高值聚集区与低低值聚集区空间分布的季节变化规律以顺时针周期性变化为主:3a来,春季集聚区分布与年集聚情况相同,夏季高高值,低低值聚集区逐渐向西扩大聚集范围,秋季则顺时针转变为东高西低的分异情况,随后高高值(低低值)聚集区沿顺时针方向南(北)移动,到冬季则转变为南高北低的空间分异情况. 相似文献
13.
臭氧与二甲硫醚和乙烯的反应速率常数测定 总被引:1,自引:0,他引:1
在室温和1.01×105 Pa条件下,利用烟雾箱以及气相色谱和臭氧分析仪研究手段,采用绝对方法(准一级反应)获得了臭氧与二甲硫醚(DMS)和乙烯(C2H4)的反应速率常数,分别为:kDMS=(1.48±0.12)×10-20 cm3·molecule-1·s-1;kC2H4=(1.35±0.10)×10-18cm3·molecule-1·s-1.其中,臭氧与乙烯的反应速率常数与文献报道吻合较好,臭氧与DMS的反应速率常数比文献报道的上限值低约两个数量级. 相似文献
14.
长江三角洲地区对流层臭氧的数值模拟研究 总被引:12,自引:1,他引:12
将NCAR的中尺度天气预报模式MM5和作者开发的化学模式相耦合,建立了一个中尺度区域空气质量模式.利用该模式选取了2个典型个例研究了长江三角洲地区的区域臭氧化学问题.本研究的目的是利用模式再现并描述长江三角洲地区的大气物理化学过程,结合地面观测资料进一步定量分析控制该地区臭氧浓度的物理和化学因子.通过个例模拟和分析表明,模式基本反应了长江三角洲地区的大气物理化学过程,进一步的因子分析解释了模拟区域内1999 06 18(个例2)臭氧浓度普遍比1999 08 07(个例1)的臭氧浓度高的原因.模拟结果表明天气条件决定的大气动力过程对区域空气质量起着至关重要的作用,这也是个例2区域臭氧浓度普遍偏高的最主要因素之一.分析表明,物理因子(平流输送,垂直湍流输送)的作用和化学因子的作用同样重要.同时还做了模式参数的敏感性实验研究,并对中尺度云雨化学模拟及其对臭氧化学的影响做了初步研究. 相似文献
15.
烟雾箱与数值模拟研究苯和乙苯的臭氧生成潜势 总被引:1,自引:0,他引:1
结合光化学烟雾箱实验与数值模拟研究了苯和乙苯在NO x存在条件下的光氧化臭氧生成潜势.重复实验表明,在乙苯-NO x反应体系中,反应物初始浓度、温度、湿度和光照强度接近的条件下,整个反应过程中臭氧的最大偏差仅为4%,证明了烟雾箱的可重复性较高.在烟雾箱实验的基础上,使用MCM(master chemical mechanism)模拟了苯和乙苯的光氧化O3生成,并将其结果与实验数据进行了比对分析.干燥(≤5%)时MCM对苯和乙苯的模拟结果与实验结果较接近,如在苯-NO x反应体系中,MCM模拟的O3峰值比实验值偏大20%;在湿度为5%~70%时,MCM模拟的乙苯光氧化O3峰值与实验值偏高约(10%~25%).用MCM模拟了太阳光照条件下苯和乙苯的臭氧生成等值线,得到在它们浓度为(10~50)×10-9,NO x在(10~100)×10-9时,苯和乙苯的6 h臭氧贡献值分别为(3.1~33)×10-9和(2.6~122)×10-9,臭氧峰值范围分别是(3.5~54)×10-9和(3.8~164)×10-9.此外,模拟得到苯和乙苯的最大增量反应活性(maximum incremental reactivity,MIR)值分别为0.25/C和0.97/C(每单位碳).该结果与Carter通过SAPRC机制得到的MIR值趋势一致.模拟得到苯和乙苯的最大臭氧反应活性(maximum ozone reactivity,MOR)分别为0.73/C和1.03/C.苯的MOR值远高于Carter使用SAPRC得到的结果,说明根据Carter得到的苯MOR会低估苯的O3潜势. 相似文献
16.
采用美国戈达德航天中心的雨云气象卫星臭氧全球网格资料,从中截取中国大陆主体部分(69.375°E~139.375°E、14.5°N~54.5°N)的数据,分析臭氧柱浓度变化的统计特性.结果表明,1979~1998年,大陆主体上空区域的臭氧柱浓度下降趋势明显,青藏高原上空的臭氧柱浓度下降速度较全国水平略快.假定其他缔约国均履行蒙特利尔议定书的前提下,以1980年臭氧柱浓度情形为基准,利用臭氧柱浓度与消耗臭氧层物质浓度之间的关系,预测了中国履行蒙特利尔议定书与不履行两种情形下,2001~2050年中国上空臭氧柱浓度变化情况.结果表明,中国履约受控情形下,2050年大陆主体部分上空的臭氧柱浓度将与其1980年的水平相近;不受控情形下,柱浓度将持续下降,2050年整个大陆主体上空绝大部分地区臭氧柱浓度值均低于240DU. 相似文献
17.
基于小波变换与传统时间序列模型的臭氧浓度多步预测 总被引:4,自引:1,他引:4
采用最大重叠小波分解与重构方法,将影响O3小时浓度的不同时间尺度的物化过程分离出来,以提高序列的光滑性.同时,选择合适的传统时间序列模型(如ARIMA模型等)来描述不同过程的序列特征,并分别拟合预报.最后,在建模中引入24 h季节项,以实现提前24 h-次性预测未来1d的O3逐时浓度.结果表明,预报的平均相对误差为12.92%,平均绝对误差和均方根误差分别为10.04 μ.g·m-3和13.98μg·m-3,预报值与实测值的相关系数和匹配指数分别为0.96和0.98.随着预测期的延长,预报误差仍处于可接受范围内.该方法同样适用于每日最大O3小时浓度预报,研究结果为发布天气预报式的空气质量预报提供了新思路,便于公众规划出行并减少大气污染暴露. 相似文献
18.
为了解化工园区大气污染情况,使用自主研制的微型大气检测仪结合无人机研究化工园区臭氧(O3)垂直廓线,在2020年8月~2021年1月于杭州湾上虞经济技术开发区开展了12d无人机外场观测实验.各观测日从08:00~18:00每隔1h进行一次飞行观测,每次观测分别获得了离地面0,50,100,200,300,400,500m的O3、总挥发性有机物(TVOCs)和二氧化氮(NO2)浓度.结果表明:受气象因素、地面工厂排放以及早晚出行高峰的影响,TVOCs和NO2浓度整体随高度增加而下降,其中NO2浓度随高度上升而下降的幅度较明显,在0m处浓度为19.7~59.1μg/m3,500m处为5.9~21.7μg/m3,下降率为40~70%,TVOCs和NO2浓度都呈现出早晚高、正午低的日变化趋势,此外可能受逆温层的影响导致个别天数NO2浓度在400~500m不降反升;O3受前体物光化学反应、太阳辐射强度及平流层输送的影响,其浓度随高度增加而下降,平均浓度在0m处为49.2μg/m3,500m处为98.4μg/m3,O3日变化浓度在15:00~17:00达到峰值.TVOCs和O3、NO2和O3在各高度浓度均呈负相关,受不同季节气象因素差异和冬季取暖排放增加的影响,O3浓度季节变化为夏>秋>冬,TVOCs和NO2浓度为冬季>秋季>夏季.后向轨迹聚类分析表明化工园区本地O3浓度会受区域输送影响升高,在冬季时由于气温低不利于前体物生成O3,本地O3浓度受区域输送影响较夏季小. 相似文献
19.
We assessed the ability of the MM5/CMAQ model to predict ozone (O3) air quality over the Kanto area and to investigate the factors
that a ect simulation of O3. We find that the coupled MM5/CMAQ model is a useful tool for the analysis of urban environmental
problems. The simulation results were compared with observational data and were found to accurately replicate most of the important
observed characteristics. The initial and boundary conditions were found to have a significant e ect on simulated O3 concentrations.
The results show that on hot and dry days with high O3 concentration, the CMAQ model provides a poor simulation of O3 maxima when
using initial and boundary conditions derived from the CMAQ default data. The simulation of peak O3 concentrations is improved with
the JCAP initial and boundary conditions. On mild days, the default CMAQ initial and boundary conditions provide a more realistic
simulation. Meteorological conditions also have a strong impact on the simulated distribution and accumulation of O3 concentrations
in this area. Low O3 concentrations are simulated during mild weather conditions, and high concentrations are predicted during hot
and dry weather. By investigating the e ects of di erent meteorological conditions on each model process, we find that advection and
di usion di er the most between the two meteorological regimes. Thus, di erences in the winds that govern the transport of O3 and its
precursors are likely the most important meteorological drivers of ozone concentration over the central Kanto area. 相似文献