首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
山地土壤—植物系统中汞污染问题的初步调查   总被引:2,自引:0,他引:2  
调查研究表明:在山地大气、水体质量较好的环境中,柑橘(含汞量)有超标问题,其土壤汞有超背景值现象;而蔬菜土壤则无此问题,其原因可能是由于多年生植物从大气和土壤中富积微量汞的时间较一年生植物长,以及土壤中砂粒结合汞粘粒结合汞具有更高的生物活性  相似文献   

2.
汞是人们重视的环境污染物。汞元素在各自的自然地理环境中,在三相间不断的循环转化,同时由于人类的工农业生产活动,有意无意地使汞进入环境,污染大气、水体及土壤。本文主要是探讨乌鲁木齐河地区(简称乌河地区)土壤中汞的含量水平,为此,研究了乌河地区土壤中汞的背景值,并在工业集中的乌鲁木齐市区采集表层土壤,研究乌市土壤中汞的污染程度,作为评价坏境质量提供依据。  相似文献   

3.
四川省环境中的汞   总被引:5,自引:0,他引:5  
熊定国  廖激 《四川环境》1994,13(1):46-49
本文较系统地报道了四川省地面水环境(河,湖原水,过滤水,沉积物),土壤,大气降水及生物-鱼体中的含量及分布特点,得出四川省环境中的汞与国内外相比属于罗低水平,地面水环境中汞的含量及溶解态汞由川东南向川西北递减,土壤中汞的含量与土壤类型,成土母质,降水条件等相关,鱼类对河水中汞有较强的富集能力,大气降水是四川省环境中汞的来源之一。文章还研究了汞的水环境容量,指出汞是四川省水环境较为脆弱的重要因素之一  相似文献   

4.
西宁地区环境有害元素砷汞含量及其防治对策   总被引:3,自引:0,他引:3  
黄雅丽 《青海环境》1999,9(2):72-75
对西宁地区自然环境(土壤、水体、农作物)中有害元素的调查分析表明,砷、汞含量水平相对较低,总体环境状况良好,局部土壤砷和汞的污染主要由人为活动(工业性大气降尘和农药、化肥施用等)所致。结合环境污染特点,探讨了砷、汞污染防治对策  相似文献   

5.
大气汞的时空分布研究进展   总被引:2,自引:0,他引:2  
大气汞是汞全球循环的组成部分,探索汞在大气中的时空分布对于研究其地球化学循环具有重要意义。本文综述了大气汞时空分布的研究现状,主要包括大气汞的来源,形态分布,空间分布度时间分布。研究表明,大气汞具有扩散范围广,空间变异大,时间变化规律性强的特点,同时还指出扩大时空分布研究范围和建立污染和预测模型是未来的研究重点。  相似文献   

6.
汞在常温下是有光泽的液态金属,在自然界多以化合物形式存在,矿产中主要以硫化物“辰砂”(HgS)形式存在。自然环境中除矿区附近外,汞含量都是很少的,例如大气中含量为0.02μg/m~3,土壤中含量在0.1mg/Kg 以下,河水汞含量在0.0001mg/L 以下;生物体中也都含有微量的汞。过多的含量大都是人为的污染。汞及其化合物都有毒。无机态的毒性较轻,有机态的特别是甲基汞毒性很强。水、食物中的汞可经口进入人体;大气中的汞可由呼吸道进入人体;汞还可经接触进入人体。大量汞摄入人体可引起急性中毒;微量汞长期进入人体,经蓄积到达一定程度时,才出现中毒症状。由于汞对神经有毒害,所以汞中毒晚期会出现运动失调、神经紊乱乃至死亡等严重后  相似文献   

7.
土壤环境汞形态及吸附解吸研究进展   总被引:1,自引:0,他引:1  
汞污染一直是全球备受关注的问题,由于土壤是环境汞的源和汇,因此已经开展了大量相关的研究工作。本论文系统总结了土壤环境汞形态及吸附解吸特征的研究现状,综述了不同类型土壤汞的背景含量,以及汞在土壤中的赋存形态,分析了土壤汞吸附特征及几种典型的土壤吸附剂(粘土矿物、铁锰氧化物、硫化物和土壤有机质)对汞吸附的作用机制。  相似文献   

8.
在全球贸易体系中,美国是中国大气汞排放的主要外部消费驱动力之一。现有研究多核算国际贸易驱动的大气汞排放,识别主要的贸易驱动关系,缺乏中美贸易模式变化对中国大气汞排放的影响分析。本文基于环境扩展型投入产出模型和结构分解分析方法,计算了1997—2017年中美贸易驱动的中国大气汞排放量,并深入分析了贸易相关的社会经济因素对中国大气汞排放变化的相对贡献。研究结果表明:1997—2007年,中美贸易驱动的中国大气汞排放从13.5 t增至32.8 t,2007年后开始回落,2017年回落至13.6 t。贸易规模扩大是推动大气汞排放增加的最主要因素(62.6 t),排放强度降低是大气汞排放减少的最大驱动因素(-67.0 t)。生产技术水平变化和贸易结构变化的贡献相对较小,近年来逐渐起到促进大气汞排放减少的作用,但其贡献不稳定。根据研究结果,提出了加快产业创新升级,优化、稳定贸易结构,提升产品竞争力等建议。  相似文献   

9.
汞的光还原是影响水生系统汞迁移转化的重要过程.光还原产生的溶解性气态汞会通过水气界面向大气挥发.该过程可以减轻水体汞负荷,降低汞被甲基化的风险,对全球汞循环具有重要意义.水生系统中汞的光还原过程十分复杂,影响因素较多,是汞环境地球化学行为研究的重点和热点.目前科学家在这方面已做了大量研究,但许多结论与建议还存在争议,对其还原机制也还不清楚.本文总结了近年来水体汞光还原过程的研究进展;分析了水生系统中影响汞光还原过程的主要因素;评述了水汞光还原研究存在的问题;提出了水体汞光还原的研究焦点与方向.  相似文献   

10.
应用硝酸微波消解土壤样品-冷原子吸收法测定土壤中的汞。通过正交试验,优化了土壤中汞的微波消解条件。并对干扰消除、方法精密度、加标回收、检出限进行了试验研究。在0~10μg/L范围内线性关系良好,方法测定下限为0.20μg/L,土壤中汞的检出限为0.005μg/g。该优化条件对汞含量为0.02—0.46μg/g的土壤样品,汞提取完全。建立了一种简便、成本低、干扰少、灵敏度高的方法。  相似文献   

11.
A mercury emission model was developed to estimate non-point source mercury (Hg) emissions occurring over the year from the Idrijca River catchment, draining the area of the world's second largest Hg mine in Idrija, Slovenia. Site-specific empirical correlations between the measured Hg emission fluxes and the parameters controlling the emission (comprising substrate Hg content, soil temperature, solar radiation and soil moisture) were incorporated into the mercury emission model developed using Geographic Information System technology. In this way, the spatial distribution and significance of the most polluted sites that need to be properly managed was assessed. The modelling results revealed that annually approximately 51 kg of mercury are emitted from contaminated surfaces in the catchment (640 km(2)), highlighting that emission from contaminated surfaces contributes significantly to the elevated Hg concentrations in the ambient air of the region. Very variable meteorological conditions in the modelling domain throughout the year resulted in the high seasonal and spatial variations of mercury emission fluxes observed. Moreover, it was found that mercury emission fluxes from surfaces in the Idrija region are 3-4 fold higher than the values commonly used in models representing emissions from global mercuriferous belts. Sensitivity and model uncertainty analysis indicated the importance of knowing not only the amount but also the type of mercury species and their binding in soils in future model development.  相似文献   

12.
Recent measurements at different locations suggest that the emission of mercury from soils may play a more pronounced role in the global mercury cycle as suggested by global emission inventories and global mercury cycling models. For up scaling and modelling of mercury emissions from soils a comprehensive assessment of the processes controlling the emission of mercury from soils is imperative. We have developed a laboratory flux measurement system (LFMS) to study the effect of major environmental variables on the emission of mercury under controlled conditions. We have investigated the effects of turbulent mixing, soil temperature and solar radiation on the emission of mercury from soils. The emission of mercury from soils is constant over time under constant experimental conditions. The response of the mercury emission flux to variations of the atmospheric transfer parameters such as turbulence requires a rapid adjustment of the equilibrium that controls the Hg(o) concentration in the soil air. It has been shown that the light-induced flux is independent of the soil temperature and shows a strong spectral response to UV-B.  相似文献   

13.
Trace gas emissions from refinery and bioremediation landfarms were investigated in a mesocosm-scale simulator facility. Five simulators were constructed and integrated with a data acquisition system and trace gas analyzers, allowing automated real-time sampling and calculation of total hydrocarbon (THC), CO2, and water vapor fluxes. Experiments evaluating the influence of simulated cultivation and rainfall on trace gas fluxes from the soil surfaces were conducted. Results were compared with published field results. Results showed that cultivating dry or moderately wet soil resulted in brief enhancements of THC fluxes, up to a factor of 10, followed by a sharp decline. Cultivating dry soil did not enhance respiration. Cultivating wet soil did result in sustained elevated levels of respiration. Total hydrocarbon emissions were also briefly enhanced in wet soils, but to a lesser magnitude than in dry soil. Hydrocarbon fluxes from refinery landfarm soil were very low for the duration of the experiments. This lead to the conclusion that elevated THC fluxes would only be expected during waste application. An evaluation of the influence of simultaneous water vapor fluxes on other trace gas fluxes highlighted the importance in lab-scale experiments of correcting trace gas fluxes from soils. The results from this research can be used to guide management practices at landfarms and to provide data to aid in assessing the effect of landfarms.  相似文献   

14.
To evaluate spatial variability of nitrous oxide (N2O) emissions and to elucidate their determining factors on a field-scale basis, N2O fluxes and various soil properties were evaluated in a 100- x 100-m onion (Allium cepa L.) field. Nitrous oxide fluxes were determined by a closed chamber method from the one-hundred 10- x 10-m plots. Physical (e.g., bulk density and water content), chemical (e.g., total N and pH), and biological (e.g., microbial biomass C and N) properties were determined from surface soil samples (0-0.1 m) of each plot. Geostatistical analysis was performed to examine spatial variability of both N2O fluxes and soil properties. Multivariate analysis was also conducted to elucidate relationships between soil properties and observed fluxes. Nitrous oxide fluxes were highly variable (average 331 microg N m(-2) h(-1), CV 217%) and were log-normally distributed. Log-transformed N2O fluxes had moderate spatial dependence with a range of >75 m. High N2O fluxes were observed at sites with relatively low elevation. Multivariate analysis indicated that an organic matter factor and a pH factor of the principal component analysis were the main soil-related determining factors of log-transformed N2O fluxes. By combining multivariate analysis with geostatistics, a map of predicted N2O fluxes closely matched the spatial pattern of measured fluxes. The regression equation based on the soil properties explained 56% of the spatially structured variation of the log-transformed N2O fluxes. Site-specific management to regulate organic matter content and water status of a soil could be a promising means of reducing N2O emissions from agricultural fields.  相似文献   

15.
We present results of mercury (Hg) in surface waters and soils and an analysis of satellite imagery from the Tapajós River basin, Brazilian Amazon, and the Reserva Garimpeira do Tapajós, the legal gold mining district of the basin. Hg bound to suspended sediment was roughly 600 and 200 times the concentration of dissolved Hg per litre of water, in impacted and pristine areas, respectively. Suspended sediments thus represent the major pathway of river-borne Hg. Median concentrations of Hg in suspended load from both impacted and pristine waters were 134 ppb, and 80% of samples were below 300ppb-in the range of naturally occurring surficial materials in the tropics. Regionally, riverine Hg fluxes were proportional to the concentration of total suspended solids. This shows that the dominant source of Hg is the sediment itself rather than anthropogenic mercury discharge from the small-scale mines. To independently test this conclusion, a mass balance was performed. A conservative calculation of the annual export of mercury (Hg) from the Creporí River (a minimum) was 1.6 tonnes for the year 1998-it could be significantly larger. This amount of Hg is difficult to account for by anthropogenic discharge alone, confirming that enhanced physical erosion caused by sluicing and dredging operations is the dominant source of Hg. We therefore conclude that gold mining operations are primarily responsible for elevated Hg concentrations. The dominant source of contamination is not, however, the loss of Hg in the gold amalgamation process. Rather, the disturbance and mobilization of large quantities of Hg-rich sediment and floodplain soil into the water column during mining operations is the source of contamination. These findings shift the focus of remediation and prevention efforts away from Hg control toward soil and sediment erosion control. The minimization or elimination of Hg losses in the mining process remains important for the health of local peoples and environments, but keeping basin soils and sediments in place would be a much more effective means of minimizing Hg fluxes to the region's rivers. To gain a spatial and historical perspective on the source and extent of emissions, satellite imagery was used. We were able to reconstruct historical mining activity, locate impacted areas, and estimate historical Hg fluxes with the imagery. To do so, the spectral characteristics of satellite images were calibrated to the concentration of suspended sediment in the rivers, which, in turn, is proportional to the Hg concentration. This analysis shows that mining-induced sediment plumes have been a dominant source of sediment to the Tapajós River system for decades. As well, the intensity and location of these emissions has varied through time. For example, sediment discharge from the Creporí River was greater in 1985 than in 1998; and the tributaries on the west bank of the Tapajós were actively being mined in 1985 but had been abandoned in 1998. This type of information should greatly assist in understanding original and ongoing sources of emissions, and in managing prevention and remediation efforts.  相似文献   

16.
The effects of changing precipitation on soil leaching in a deciduous forest were examined by experimentally manipulating throughfall fluxes in the field. In addition to an ambient treatment (AMB), throughfall fluxes were reduced by 33% (DRY treatment) and increased by 33% (WET treatment) using a system of rain gutters and sprinklers on Walker Branch Watershed, Tennessee. Soil leaching was measured with resin lysimeters in the O horizons and with ceramic cup lysimeters in the E (25 cm) and Bt (70 cm) horizons. Large and statistically significant treatment effects on N fluxes were found in the O horizons (lower N fluxes in the DRY and higher N fluxes in the WET treatment). Together with the greater O horizon N content observed in the DRY treatment, this suggested that N was being immobilized at a greater rate in the DRY treatment than in the AMB or WET treatments. No statistically significant treatment effects on soil solution were found in the E horizons with the exception of (Ca2+ + Mg2+) to K+ ratio. Statistically significant treatment effects on electrical conductivity (EC), pH, Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were found in the Bt horizons due to differences between the DRY and other treatments. Despite this, calculated fluxes of Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were lowest in the DRY treatment. These results suggest that lower precipitation will cause temporary N immobilization in litter and long-term enrichment in soil base cations whereas increased precipitation will cause long-term depletion of soil base cations.  相似文献   

17.
The flux of dissolved organic carbon (DOC) in soil facilitates transport of nutrients and contaminants in soil. There is little information on DOC fluxes and the relationship between DOC concentration and water flux in agricultural soils. The DOC fluxes and concentrations were measured during 2.5 yr using 30 automatic equilibrium tension plate lysimeters (AETPLs) at 0.4 m and 30 AETPLs at 1.20-m depth in a bare luvisol, previously used as an arable soil. Average annual DOC fluxes of the 30 AETPLS were 4.9 g C m(-2) y(-1) at 0.4 m and 2.4 g C m(-2) y(-1) at 1.2 m depth. The average leachate DOC concentrations were 17 mg C L(-1) (0.4 m) and 9 mg C L(-1) (1.2 m). The DOC concentrations were unrelated to soil moisture content or average temperature and rarely dropped below 9 mg C L(-1) (0.4 m) and 5 mg C L(-1) (1.2 m). The variability in cumulative DOC fluxes among the plates was positively related to leachate volume and not to average DOC concentrations at both depths. This suggests that water fluxes are the main determinants of spatial variability in DOC fluxes. However, the largest DOC concentrations were inversely proportional to the mean water velocity between succeeding sampling periods, suggesting that the maximal net DOC mobilization rate in the topsoil is limited. Elevated DOC concentrations, up to 90 mg C L(-1), were only observed at low water velocities, reducing the risks of DOC-facilitated transport of contaminants to groundwater. The study emphasizes that water flux and velocity are important parameters for DOC fluxes and concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号