首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Morris  W. Skea 《Marine Biology》1978,47(4):303-312
We have measured the photosynthetic assimilation of 14C-carbon dioxide into (1) ethanol-soluble, (2) hot-trichloroacetic acid (TCA)-soluble (polysaccharide), and (3) protein fractions of natural populations of marine phytoplankton. Diurnal studies showed a continuing incorporation of carbon-14 into the protein fraction during hours of darkness. This was accompanied by a concomitant decrease in the proportion assimilated into polysaccharide. When incorporation was measured under constant experimental conditions, the pattern of photosynthesis did not vary from one time of day to another. At one station approximately 12 km south of Boothbay Harbor, the proportion of carbon entering protein showed marked seasonal changes. During the winter, approximately 10 to 20% of the fixed carbon was incorporated into protein. During the summer the value increased to 22 to 35%. Between these times, a transient high value of 37 to 47% of the fixed carbon entering protein coincided with the spring bloom. The increases in proportion incorporated into protein were largely paralleled by equivalent decreases in the polysaccharide fraction. The proportion of carbon incorporated into protein during photosynthesis also increased markedly at reduced light intensities. This increase occurred both when populations were incubated in neutral-density filters and when incubated at increasing depths in the photic zone. There was little consistent and significant difference between the neutral-density filters and depth in the water column, suggesting a minimal role for light quality. The extent of the increased relative rate of protein synthesis at the lower light intensities depended on the nutritional state of the phytoplankton. For example, summer populations from water containing low concentrations of inorganic nutrients responded less dramatically to reduced light intensities than did populations from nutrient-rich waters.  相似文献   

2.
We examined the mechanisms controlling blooms of the toxic dinoflagellate Alexandrium tamarense Lebour and the concomintant patterns of shellfish toxicity in the southwestern Gulf of Maine, USA. During a series of cruises from 1987 to 1989, hydrographic parameters were measured to elucidate the physical factors affecting the distribution and abundance of dinoflagellates along this coast. In 1988 and 1989 when toxicity was detected in the southern part of this region, A. tamarense cells were apparently transported into the area between Portsmouth, New Hampshire, and Cape Ann, Massachusetts, in a coastally trapped buoyant plume. This plume appears to have been formed by the outflow from the Androscoggin and Kennebec Rivers. Flow rates of these rivers, hydrographic sections, and satellite images led us to conclude that the plume persisted for about a month, and extended alongshore for several hundred kilometers. The distribution of cells followed the position of the plume as it was influenced by wind and topography. When winds were downwelling-favorable (to the southwest), cells were moved alongshore to the south, and were held to the coast; when winds were upwelling-favorable (to the northeast),the plume sometimes separated from the coast, advecting the cells offshore. In 1987 when no plume was present, A. tamarense cells were scarce, and no toxicity was recorded at the southern stations. The alongshore advection of toxic cells within a coastally trapped buoyant plume can explain the details of the temporal and spatial patterns of shellfish toxicity along the coast. We hypothesize that (1) the source of the A. tamarense populations is in the north, possibly associated with the Androscoggin and Kennebec estuaries, that (2) toxicity patterns follow a predictable relationship with river flow volume and timing of flow peaks and that (3) wind stresses directly influence the distribution of low salinity water and the dinoflagellate cells. Local, in situ growth of dinoflagellates can be an important factor initiating toxic dinoflagellate blooms. However, these data demonstrate the significant role of alongshore transport of established populations of A. tamarense in controlling the location and timing of paralytic shellfish poisoning (PSP) outbreaks in May and June along the southwestern coast of the Gulf of Maine.  相似文献   

3.
4.
Introduced species are common members of estuarine communities where their role as competitors and predators is of concern, This paper examines the invasion of Gulf of Maine benthic habitats by the ecologically similar alien invertebrates Styela clava, Botrylloides diegensis , and Membranipora membranacea .
Styela clava increased slowly in abundance at study sites in Beverly, Massachusetts and Portsmouth, New Hampshire. We found no evidence of competitive dominance by S. clava , even though it is the competitive dominant in similar habitats elsewhere. Botrylloides diegensis rapidly became a dominant species after its arrival in the Great Bay Estuary, but this dominance was short-lived. B. diegensis persists in the estuary as an early colonist of primary space and as an epibiont on secondary substrates in established communities. Membranipora membranacea became the dominant epiphyte on laminarian kelps within two years. Although M. membranacea overgrew the native epiphytes Obelia geniculata and Electra pilosa in the overwhelming majority of encounters these native species are more common on other algal hosts. Therefore, competitive dominance is not likely a factor in the successful invasion of the Gulf of Maine by M. membranacea .
These species provide evidence for opposing views of the role of competition in mediating community invasion. We show that ecological similarity among species is not an accurate criterion to predict either the mechanism of invasion or the means of persistence. In addition, these data indicate that biological invasions must be examined on broad spatial and temporal scales; short-term or narrowly focused studies can lead to incorrect conclusions.  相似文献   

5.
Miller RJ  Etter RJ 《Ecology》2008,89(2):452-462
Dramatic shifts in community composition occur between vertical and horizontal rocky surfaces in subtidal environments worldwide, yet the forces mediating this transition are poorly understood. Vertical rock walls are often covered by lush, diverse communities of sessile suspension-feeding invertebrates, while adjacent horizontal substrates are dominated by algae, or corals in the tropics. Multiple factors, including light, sedimentation, water flow, and predation have been proposed to explain this pattern, but experimental tests of these hypotheses are lacking. We manipulated light level and predation to test whether variation in these mechanisms could be responsible for the shift in composition of sessile communities between vertical and horizontal surfaces in the rocky subtidal Gulf of Maine. Shaded horizontally oriented granite plots were dominated by invertebrates (e.g., ascidians, barnacles, bryozoans) after 25 months. Unshaded plots were dominated by macroalgae, which was virtually absent in shaded plots. Exclusion of grazers with cages had no effect on percent cover of invertebrates or algae. Preferential settlement of invertebrate larvae to shaded plots, due to larval behaviors such as negative phototaxis, did not seem to play a role. Shading likely affects post-settlement mortality of invertebrates by alleviating competition for space with algae, although greater abundance of micropredators in algal-dominated communities could also be important. Communities on shaded plots lacked many taxa present on natural wall communities, likely due to greater disturbance on horizontal substrates and/or lack of sufficient time for colonization of these taxa. These results suggest that light plays a key role in controlling the structure, composition, and function of shallow subtidal communities.  相似文献   

6.
Genetic structure of eight Northwest Atlantic populations of the marine polychaeteGlycera dibranchiata Ehlers was examined with starch gel electrophoresis. Samples were collected during summer and fall 1981, and seven polymorphic and four monomorphic loci were consistently scored. Average heterozygosity (0.126) and percent polymorphic loci (59.3) were comparable to the averages reported for marine invertebrates. Minimum genetic distances between populations ranged from 0.003 to 0.093, levels typically associated with local populations of the same species in other taxa. Based on these data, inter- and intra-estuarine migration and gene flow appear to be low. Only two populations, separated by 13 km along the same river in New Brunswick, Canada, were not genetically different from each other. These findings may have relevance for management strategies in bloodworms.  相似文献   

7.
Utilizing marine protected areas (MPAs) to isolate the ecological effects of human influence can help us understand our effect on systems and foster ecosystem-based approaches to management. Specifically, examining invertebrate prey community dynamics inside and outside an MPA may provide a measure of how altering human influence (i.e., certain fishing pressures) affects ecosystem interactions. We measured trophic interactions inside and outside a deep-water temperate MPA over 2 years. Predation rates on tethered, preferred groundfish prey (crabs) were initially identical inside and outside the MPA, but decreased outside the MPA after the commercial groundfish fishing season commenced. Predation trials using a ubiquitous prey species (brittle stars) and a less preferred prey species (urchins) served as controls, showing no MPA effect. Our experiments quantify differential predatory activity resulting from differences in human activity driven by an MPA, demonstrating important effects of fishing and regulations on the strength of trophic interactions.  相似文献   

8.
This paper describes a quantitative investigation of relationships between the growth of phytoplankton, and climatic and hydrodynamci conditions in temperate fjords with marked tides, as exemplified by Puget Sound, Washington (USA). Algal growth in the open waters of the central basin of the Sound is dominated by a number of intense blooms beginning in late April or May and recurring throughout the summer. Rarely, and only briefly, does nitrate become exhausted. The phytoplankton production rate in the central basin of Puget Sound is about 465 g C m-2 year-1. During the springs of 1966 and 1967, oceanographic measurements were carried out at a mid-channel station with sufficient frequency to allow investigation of physical and biological processes with time scales of the order of a day. The principal investigative tool is a numerical model in which the hydrodynamical conditions are represented by an approximate analysis of the gravitational convection mode of circulation. Algal concentration is represented as a continous function of space and time in the model which ascribes changes in phytoplankton density to variations in photosynthetic and respiratory activity, algal sinking, grazing by herbivores, and to mixing and advection. Computations adequately reproduce the principal features of phytoplankton concentrations observed during 75 days and 35 days in the springs of 1966 and 1967, respectively. Numerical experiments assess the relative importance of various processes which govern the level of primary production in Puget Sound. It is concluded that phytoplankton growth is limited by a combination of factors, including vertical advection and turbulence, modulation of underwater light intensity by self-shading and inorganic particulates, sinking of algal cells, and occasional rapid horizontal advection of the population from the area by sustained winds. The high primary productivity of the Sound is due to intensive upward transport of nitrate by the estuarine mechanism. These results should be generally applicable to other temperate fjords because of the largely conventional choice of the biological functions.  相似文献   

9.
10.
Historical documents and classic works together with recent specialized literature have described Harmful Algal Blooms (HABs) in the Gulf of California. This is a review of HABs impact (qualitative and quantitative) during the last decades in the Gulf of California on wild (mammals, birds, fishes, and invertebrates) and cultured animals (shrimps and fishes). Microalgal species responsible of noxious effects are Noctiluca scintillans, Cochlodinium polykrikoides, Gymnodinium catenatum, Prorocentrum minimum, Akashiwo sanguinea, Chattonella subsalsa Ch. marina, Chattonella sp., Heterocapsa sp., Dinophysis sp., Fibrocapsa japonica, Heterosigma akashiwo, Thalassiosira sp., Chaetoceros spp., Pseudo-nitzschia australis, P fraudulenta, Pseudo-nitzschia sp., Trichodesmium erythraeum and ScSchizotrix calcicola. Emphasis is given to the necessity to continue with interdisciplinary studies in oceanography, ecology, toxicology and toxinology interrelated with biomedical sciences such as physiology, pathology, epidemiology and animal health.  相似文献   

11.
The ultrastructural features of gametogenesis are described in male and female colonies of the sea pen Pennatula aculeata. Specimens were collected for observation and fixation at 113 to 231 m depth in the Gulf of Maine, USA, in August 1993. The species is gonochoric, and all stages of gametogenesis are observed in both male and female colonies >45 mm in height. Gametogenesis shows several features that differ from sea anemones. The developing oocytes and sperm cysts are completely encompassed by gastrodermally derived follicle cells, and they are released from the mesenteries into the coelenteron before they are fully differentiated. Following maturation in the coelenteron, the eggs and intact sperm cysts are expelled through the mouths of the autozoids during spawning. The expulsion of sperm cysts suggests that they function as primitive spermatophores, perhaps as a way of reducing sperm dilution. Vitellogenesis results in the biosynthesis of lipid droplets which are the sole nutrient reserves in the egg. Heterosynthetic vitellogenesis is characterized by the importation of lipid precursors into the oocyte, and there is some indirect evidence that hypertrophic follicle cells play a role in production, transport, and/or mediation of these precursors. Spermatogenesis is similar to that of other anthozoans. The spermatozoon has a cone-shaped head, a posterior nuclear fossa, a ring of lipid-like bodies in the midpiece, a prominent cytoplasmic collar surrounding the proximal flagellum, and a single mitochondrion, but the posterior region of the sperm also contains previously undescribed concentric rings of cisternae resembling smooth endoplasmic reticulum. Received: 23 March 1998 / Accepted: 31 July 1998  相似文献   

12.
Despite long planktonic durations, many species of broadcast spawning invertebrates exhibit genetic structure at small spatial and temporal scales. Amplified fragment length polymorphisms were used to assess genetic variation in the sea scallop, Placopecten magellanicus, among four inshore and one offshore location in the Gulf of Maine and temporal genetic variation among age classes of sea scallops at one site. Our results indicated that genetic structure for P. magellanicus exists on smaller spatial scales (tens to hundreds of kilometers) than expected given the 40-day planktonic larval period. In addition, genetic differences among age classes may be influenced by inter-annual differences in larval supply or reproductive success. Future genetic studies should sample multiple age classes prior to comparison among locations.  相似文献   

13.
14.
Fitting generalised linear models (GLMs) with more than one predictor has become the standard method of analysis in evolutionary and behavioural research. Often, GLMs are used for exploratory data analysis, where one starts with a complex full model including interaction terms and then simplifies by removing non-significant terms. While this approach can be useful, it is problematic if significant effects are interpreted as if they arose from a single a priori hypothesis test. This is because model selection involves cryptic multiple hypothesis testing, a fact that has only rarely been acknowledged or quantified. We show that the probability of finding at least one ‘significant’ effect is high, even if all null hypotheses are true (e.g. 40% when starting with four predictors and their two-way interactions). This probability is close to theoretical expectations when the sample size (N) is large relative to the number of predictors including interactions (k). In contrast, type I error rates strongly exceed even those expectations when model simplification is applied to models that are over-fitted before simplification (low N/k ratio). The increase in false-positive results arises primarily from an overestimation of effect sizes among significant predictors, leading to upward-biased effect sizes that often cannot be reproduced in follow-up studies (‘the winner's curse’). Despite having their own problems, full model tests and P value adjustments can be used as a guide to how frequently type I errors arise by sampling variation alone. We favour the presentation of full models, since they best reflect the range of predictors investigated and ensure a balanced representation also of non-significant results.  相似文献   

15.
Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts.  相似文献   

16.
Exploring the response of an ecosystem, and subsequent tradeoffs among its biological community, to human perturbations remains a key challenge for the implementation of an ecosystem approaches to fisheries (EAF). To address this and related issues, we developed two network (or energy budget) models, Ecopath and Econetwrk, for the Gulf of Maine ecosystem. These models included 31 network “nodes” or biomass state variables across a broad range of trophic levels, with the present emphasis to particularly elucidate the role of small pelagics. After initial network balancing, various perturbation scenarios were evaluated to explore how potential changes to different fish, fisheries and lower trophic levels can affect model outputs. Categorically across all scenarios and interpretations thereof, there was minimal change at the second trophic levels and most of the “rebalancing” after a perturbation occurred via alteration of the diet matrix. Yet the model results from perturbations to a balanced energy budget fall into one of three categories. First, some model results were intuitive and in obvious agreement with established ecological and fishing theory. Second, some model results were counter-intuitive upon initial observation, seemingly contradictory to known ecological and fishing theory; but upon further examination the results were explainable given the constraints of an equilibrium energy budget. Finally, some results were counter-intuitive and difficult to reconcile with theory or further examination of equilibrium constraints. A detailed accounting of biomass flows for example scenarios explores some of the non-intuitive results more rigorously. Collectively these results imply a need to carefully track biomass flows and results of any given perturbation and to critically evaluate the conditions under which a new equilibrium is obtained for these types of models, which has implications for dynamic simulations based off of them. Given these caveats, the role of small pelagics as a prominent component of this ecosystem remains a robust conclusion. We discuss how one might use this approach in the context of further developing an EAF, recognizing that a more holistic, integrated perspective will be required as we continue to evaluate tradeoffs among marine biological communities.  相似文献   

17.
A one year field study of four stations in the Gulf of Bothnia during 1991 showed that the biomass was ca. two times, and primary productivity ca. four times, lower in the north (Bothnian Bay) than in the south (Bothnian Sea) during the summer. Nutrient addition experiments indicated phosphorus limitation of phytoplankton in the Bothanian Bay and the coastal areas in the northern Bothnian Sea, but nitrogen limitation in the open Bothanian Sea. A positive correlation between the phosphate concentration and the production/biomass ratio of phytoplankton was demonstrated, which partly explained the differences in the specific growth rate of the phytoplankton during the summer. Differences in photosynthetic active radiation between the stations also showed a covariation with the primary productivity. The relative importance of nutrient or light limitation for photosynthetic carbon fixation could not, however, the conclusively determined from this study. Marked differences in phytoplankton species composition from north to south were also observed. The number of dominating species was higher in the Bothnian Sea than in the Bothnian Bay. The distribution of some species could be explained as due to nutrient availability (e.g. Nodularia spumigena, Aphanizomenon sp.), while salinity probably limits the distribution of some limnic as well as marine species. The potentially toxic phytoplankton N. spumigena, Dinophysis acuminata and Chrysochromulina spp. were common in the Bothnian Sea but not in the Bothnian Bay. The pico- and nanoplankton biomass during late summer was higher than previously reported due to a revised carbon/volume ratio.  相似文献   

18.
The reproductive status and body condition of 195 (≥185 cm curved fork length, CFL; assigned age 7 and above) Atlantic bluefin tuna were assessed in the Gulf of Maine during the commercial fishing season of June–October, 2000–2002. Given the distance between known spawning and feeding grounds, the prevailing paradigm for Atlantic bluefin tuna (Thunnus thynnus thynnus, L.) suggests that the most likely histological state for females arriving in the Gulf of Maine after spawning would be a resting or quiescent state with little or no perigonadal fat. Alternatively, the presence of mature or mature-inactive histological states in some females supports a more varied or individualistic model for bluefin reproduction. No relationship was found between body condition and reproductive status. Males were found in all reproductive stages, but were more likely to be in spawning condition (stages 4 and 5) or a mature-inactive state (stage 6) in June and July. Female bluefin tuna were found in stage 1 (immature or non-spawning) and stage 6 (mature-inactive). Stage 6 females were only present in June and July and smaller females (<235 cm CFL) were more likely to be in stage 6 than large females (>235 cm CFL) sampled during those same months. The presence of smaller females in stage 6 arriving at the same time as larger females in stage 1 indicates that Western Atlantic bluefin tuna may have an asynchronous reproductive schedule and may mature at a smaller size than the currently accepted paradigm suggests.  相似文献   

19.
Habitat protection, creation and management are at the forefront of nature conservation throughout the world. Many terrestrial and marine ecosystems are under pressure from a diverse range of issues including impacts associated with climate change, multiple resource use and increased development. Saltmarsh within the United Kingdom, is one such valuable habitat which has suffered significant losses over the last eighty or so years. Any environmental management practice or decision applied to these areas, should ideally be based on evidence of processes and change. One potential way of measuring saltmarsh change is by using historical maps and aerial photographs to look for patterns of growth or reduction. This research examines the process of saltmarsh mapping and compares historical aerial photographs and maps to assess their suitability for habitat change assessment. This research suggests that whilst historical aerial photography can be accessed and utilised effectively, the data presented on maps should be treated with a great deal of caution. The saltmarsh represented on the maps used in this research was noticeably different from that mapped using aerial photographs from a similar time period. Whilst this does not dismiss the use of historic maps along this part of the coast, it does suggest they should be treated with some degree of caution and will vary in their reliability.  相似文献   

20.
This work describes how a general, process-based mass-balance model (CoastMab) for phosphorus for coastal areas may be used as a tool to estimate realistic values of “natural” or preindustrial reference levels of key bioindicators in coastal science, including the Secchi depth, a standard measure of water clarity, the chlorophyll-a concentration, an operational measure of phytoplankton biomass and the concentration of cyanobacteria, a measure of the concentration of harmful algae. The CoastMab-model is an ecosystem model giving monthly predictions to achieve seasonal variations of basin-wide properties. The selected case-study area, the Gulf of Riga, is sensitive to nutrient loading because of its shallowness and low openness towards the Baltic Proper. The morphometry of any coastal area, as given by the size and form parameters, influences all internal processes, such as sedimentation, resuspension, diffusion in water and from sediments to water, biouptake and retention in biota, stratification, mixing and outflow. There has been no mass-balance modeling for nitrogen (N) in this work because empirical data (from the HELCOM database) clearly indicate that the monthly primary production in the Gulf of Riga is regulated by phosphorus (P) – the mean monthly total-N to total-P ratios are well over 7.2 (the Redfield-ratio) and generally higher than 15 for the data used in this study (from 1992 to 2005). At present anthropogenic loads, the average modeled monthly values for Secchi depth, chlorophyll (Chl), cyanobacteria (CB) and total-P (TP) are 3.2 m, 3.8 μg/l, 78 μg/l and 31.3 μg/l, respectively. If 50% of all anthropogenic sources to the Gulf of Riga via rivers, point sources and diffuse sources were to be removed, these values would be 3.6 m, 3.4 μg Chl/l, 63 μg CB/l and 29.1 μg TP/l. If 60% of the anthropogenic phosphorus fluxes to the Baltic Proper were to be omitted and as well as 75% of all direct anthropogenic sources to the Gulf of Riga, the values would be 4.6 m, 2.7 μg Chl/l, 45 μg CB/l and 25.4 μg TP/l. These values represent the “natural” reference levels and it is not realistic to expect that remedial measures would improve the conditions more than that. Using the CoastWeb-model, similar calculations can be made for any given coastal area and the data necessary for such calculations are discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号