首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   

2.
3.
Annual and seasonal variabilities in source contribution to total suspended particles (TSP) measured over an urban location in western India, Ahmedabad between May 2000 and January 2003 are examined in this study. Positive matrix factorization (PMF) resolved six factors including airborne regional dust, calcium carbonate rich dust, biomass burning/vehicular emissions, secondary nitrate/sulfate, marine aerosol, and smelter. In this study, non-parametric statistical tests including the Kruskal–Wallis analysis of variance (K–W ANOVA) and Spearman rank correlation (ρ) test were used to assess the annual and seasonal variations in factor contributions, and the influence of meteorology on these contributions, respectively. None of the factor contributions exhibited annual variations except airborne regional dust, and biomass burning/vehicular emissions factors. All of the factors exhibited seasonal variations. Several factor monsoon (July–September) median concentrations were significantly different from one or more of the other season medians. In general, it appeared that meteorological factors played a role in establishing the seasonal behavior of factor contributions. Factor contributions exhibited low to moderate correlations with meteorological parameters such as temperature, relative humidity, wind direction, and wind speed. Amongst all of the relationships, marine aerosol factor was reasonably well correlated with relative humidity (ρ = 0.73) and wind direction (ρ = 0.73) during the pre-monsoon season (March–May). This observation suggests that the aerosol transported by moisture laden winds from the Arabian sea contribute to this factor. The airborne regional dust factor was also moderately correlated with wind speed (ρ = 0.70) during the post-monsoon season. This relationship indicates that high regional dust concentrations are favored by high wind speeds and the resultant increase in dispersion.  相似文献   

4.
Environmental Science and Pollution Research - Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous...  相似文献   

5.
6.
A study was conducted to evaluate five techniques for determining ambient formaldehyde concentrations. One technique used a spectroscopic determination, and the other four techniques used derivatization followed by fluorometric analysis or high-performance liquid chromatography with detection by u.v. absorption. Formaldehyde was generated by two techniques. In the first technique, zero air was bubbled through a solution of aqueous formaldehyde to produce gas-phase formaldehyde. Various compounds serving as possible interferences were added singly or in combination to these air mixtures. In the second technique, formaldehyde was generated as a product from controlled irradiations of hydrocarbons and nitrogen oxides in a smog chamber operated in a dynamic mode. The study was conducted as a blind intercomparison with no knowledge by the participants of the HCHO concentrations or the interferences added.The data from each of the techniques were compared against mean values in each sampling period. For formaldehyde in zero air, average deviations for each of the techniques ranged between 15 and 30%. At a formaldehyde concentration of 10 ppb, each technique showed no evidence for interferences by O3 (190 ppbv), NO2 (300 ppbv), SO2 (20 ppbv), and H2O2 (7 ppbv). The agreement for formaldehyde concentrations measured for the photochemical mixtures was similar to that of the mixtures in zero air.Ambient measurements were also performed on three evenings and for one 36-h period. Ambient formaldehyde concentrations ranged from 1 to 10 ppbv. Ambient H2O2 measurements were also performed. A strong correlation in the diurnal concentration profile for formaldehyde and H2O2 was observed over the 36-h period.  相似文献   

7.
Derivation of ambient water quality criteria for formaldehyde.   总被引:2,自引:0,他引:2  
D W Hohreiter  D K Rigg 《Chemosphere》2001,45(4-5):471-486
This paper describes the derivation of aquatic life water quality criteria for formaldehyde, developed in accordance with United States Environmental Protection Agency's (USEPA's) Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. The initial step in deriving water quality criteria was to conduct an extensive literature search to assemble available acute and chronic toxicity data for formaldehyde. The literature search identified a large amount of information on acute toxicity of formaldehyde to fish and aquatic invertebrates. These acute data were evaluated with respect to data quality, and poor quality or uncertain data were excluded from the data base. The resulting data base met the USEPA requirements for criteria derivation by having data for at least one species in at least eight different taxonomic families. One shortcoming of the literature-derived data base, however, was that few studies involved analytical confirmation of nominal formaldehyde concentrations and reported toxicity endpoints. Also, there were relatively few data on chronic toxicity. The acute toxicity data set consisted of data for 12 species of fish, 3 species of amphibians, and 11 species of invertebrates. These data were sufficient, according to USEPA guidelines, to calculate a final acute value (FAV) of 9.15 mg/l, and an acute aquatic life water quality criterion (one-half the FAV) of 4.58 mg/l. A final acute-chronic ratio (ACR) was calculated using available chronic toxicity data and USEPA-recommended conservative default assumptions to account for missing data. Using the FAV and the final ACR (5.69), the final chronic aquatic life water quality criterion was determined to be 1.61 mg/l.  相似文献   

8.
Atmospheric levels of formaldehyde and acetaldehyde as well as their diurnal and seasonal variations were investigated from 1994 to 1997 in downtown Rome during sunny and wind calm days. Hourly concentrations of formaldehyde ranged from 8 to 28 ppbV in summer and 7 to 17 ppbv in winter; acetaldehyde concentrations varied correspondingly within the 3–18 and 2–7 ppbv intervals. Percentages of both aldehydes photochemically produced were estimated through a simple relationship based upon the comparison of individual ratios of formaldehyde and acetaldehyde to toluene in ambient air and automobile emission. Photochemical production was found to weigh upon atmospheric levels for 80–90% in summer days. It dropped below 35% in the winter period, when direct emission from traffic largely predominated. Photochemical summer source was more efficient for acetaldehyde than for formaldehyde, especially in the early morning. The importance of formaldehyde as the major source of hydroxyl radicals in Rome was also assessed.  相似文献   

9.
Environmental Science and Pollution Research - Formaldehyde (HCHO) is a naturally occurring compound found in ambient air which can induce cancer and sick-building syndrome. It plays an important...  相似文献   

10.
As the host city of the 2008 Olympic games, Beijing implemented a series of air pollution control measures before and during the Olympic games. Ambient formaldehyde (HCHO) concentrations were measured using a fluorometric instrument based on a diffusion scrubber and the Hantzsch reaction; hydrocarbons were simultaneously measured using gas chromatography–mass spectrometry (GC–MS). Meteorological parameters, CO, O3, and NO2 concentrations were measured by standard commercial instrumentation. In four separate periods: (a) before the vehicle plate number control (3–19 July); (b) during the Olympic Games (8–24 August); (c) during the Paralympic Games (6–17 September) and (d) after the vehicle control was ceased (21–28 September), the average HCHO mixing ratios were 7.31 ± 2.67 ppbv, 5.54 ± 2.41 ppbv, 8.72 ± 2.48 ppbv, and 6.42 ± 2.79 ppbv, while the total non-methane hydrocarbons (NMHCs) measured were 30.41 ± 18.08 ppbv, 18.12 ± 9.38 ppbv, 30.50 ± 13.37 ppbv, and 33.33 ± 15.85 ppbv, respectively. Both HCHO and NMHC levels were the lowest during the Olympic games, and increased again during the Paralympic games even with the same vehicle control measures operative. Similar diurnal HCHO and O3 patterns indicated that photo-oxidation of NMHCs may be the major source of HCHO. The diurnal profile of total NMHCs was very similar to that of NO2 and CO: morning and evening peaks appeared in rush hours, indicating even after strict vehicle control, automobile emission may still be the dominant source of the HCHO precursors. The contributions of HCHO, alkanes, alkenes, and aromatics to OH loss rates were also calculated. HCHO contributed 22 ± 3% to the total VOCs and 24 ± 1% to the total OH loss rate. HCHO was not only important in term of abundance, but also important in chemical reactivity in the air.  相似文献   

11.
AbstractIt is well known that many ecosystems in the eastern United States, including the Adirondack Mountain region of New York, are particularly sensitive to acidic deposition because the soils and lakes in the region tend to have low values of base saturation and acid neutralizing capacity, respectively [e.g. Environ Sci Policy, 1 (1998), 185]. To facilitate tracking the impacts of anthropogenic emissions on air quality, acidic deposition, and surface water quality, the National Atmospheric Deposition Program, New York State Department of Environmental Conservation, and Adirondack Lake Survey Corporation have been monitoring ambient sulfur dioxide and aerosol sulfate levels, and anion and cation concentrations in wet deposition and lake water over the past few decades. In this paper, we discuss the seasonality and year-to-year variability, and illustrate some of the complexities in estimating temporal trends in these data. The periods of analysis extended through 2000, beginning in 1991 for the ambient air quality data, 1978 for the wet deposition data, and 1982 for the lake water quality data. While the lake water SO4(2-) concentrations appear to be decreasing gradually, the air concentration data appear to have changed abruptly in the 1990s and the precipitation-weighted concentrations exhibited both gradual and sharp decreases during the same period.  相似文献   

12.
Crop growth along a gradient of ambient air pollution   总被引:1,自引:0,他引:1  
An experiment, designed to elucidate the relative importance of SO2, NO2, O3, and other environmental factors in influencing the performance of four cultivars of Trifolium pratense L. and Hordeum vulgare L., was performed by growing plants in situ along a transect from central London into the surrounding countryside. A multiple regression analysis provided evidence of significant effects of SO2, NO2, and, to a lesser extent, O3, on vegetative and reproductive growth parameters, although these differed according to pollutant, cultivar, species, and the parameter concerned. The significance of these findings for the impact of ambient air pollution on the growth of crops in the more polluted rural areas of western Europe is suggested by the fact that mean SO2, NO2, and O3 concentrations in the experimental area are less than 0.020 (39.2 microg/m3), 0.025 (47.75 microg/m3), and 0.030 ppm (58.8 microg/m3), respectively. The value of the technique is discussed with respect to other studies on the effects of low levels of air pollution on crops.  相似文献   

13.
Das S  Jana BB 《Chemosphere》2004,55(2):175-185
Water and sediment samples collected from 18 wetland ponds within and outside industrial areas were examined for cadmium concentration and water quality parameters during the period of January to July 1996. The Cd contents in gill, liver, mantle and shell of freshwater mussel (Lamellidens marginalis) as well as leaves and roots of water hyacinth Eichhornia those occurred in these ponds were also estimated. Cd concentration ranged from 0.006 to 0.7025 mg/l in water and from 7 to 77 microg/gdw in sediments of all the ponds investigated. The amount of Cd occurring in water and sediment was much higher in concentrations in the ponds located in Captain Bheri and Mudiali farm close to industrial areas, compared to remaining ponds located outside the industrial belt. Lamellidens marginalis procured from Mudiali and Captain Bheri ponds showed regardless of size, tissue and season of collection significantly higher Cd concentration than did those from other ponds. Likewise, tissue Cd in Eichhornia collected from Mudiali pond was as high as 125-152 microg/gdw in root and 21-63 microg/gdw in leaves compared to 40-108 microg/gdw in root and 9-43 microg/gdw in leaves in the remaining ponds. Seasonal variability of Cd was clear-cut; the concentration was relatively higher in water and sediment in all ponds during summer than during monsoon season or winter. Size-wise, smaller groups showed the highest concentrations of Cd in all tissues of Lamellidens compared with medium and large size groups. Concentration factor for all tissues of Lamellidens regardless of size and season, was inversely proportional with the ambient Cd concentrations. Concentration factor estimated for all tissues in all ponds and all seasons was in the order: liver>gill>shell>mantle. As all ponds located outside the industrial belt showed Cd concentrations ranging from 0.006 to 0.049 mg/l, it is suggested that these wetlands do not pose serious risk to the environment.  相似文献   

14.

Background  

Airborne fine particulates (PM 2.5) and its associated polycyclic aromatic hydrocarbons (PAHs) are reportedly hazardous in urban environment due to the presence of multiple emission sources.  相似文献   

15.
Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922–2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0690-4) contains supplementary material, which is available to authorized users.  相似文献   

16.
Ambient air dust samples were collected from industrial, commercial and residential areas of four metropolitan cities (Delhi, Calcutta, Madras and Cochin) in India, and were analysed for 27 elements (As, Ba, Br, Ce, Co, Cr, Cs, Cu, Eu, Hf, Hg, Fe, Ga, La, Lu, Na, P, Sb, Sc, Se, Sr, Ta, Tb, Th, Rb, Yb and Zn) by Instrumental Neutron Activation Analysis (INAA). Samples were irradiated with thermal neutrons in a nuclear reactor for 1 day and counted by high resolution gamma spectrometry at different intervals. Several environmental standards such as Coal (SRM 1932b); Urban Particulate Matter (SRM 1648) from NIST, USA; Vehicle Exhaust from NIES, Japan; and Soil-5 from IAEA, Vienna were also analysed for quality assurance. The results reveal that the concentrations of several pollutant elements in dust samples from the four cities are highly variable. Wide differences were observed for elemental concentrations of As, Ba, Br, Cu, Cr, Hg, Fe, Sb, Se and Zn and these variations are explained in terms of their possible sources of origin.  相似文献   

17.
In recent years, there has been a marked increase in the amount of ambient air quality data collected near Marcellus Shale oil and gas development (OGD) sites. We integrated air measurement data from over 30 datasets totaling approximately 200 sampling locations nearby to Marcellus Shale development sites, focusing on 11 air pollutants that can be associated with OGD operations: fine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, toluene, xylenes, and hydrogen sulfide (H2S). We evaluated these data to determine whether there is evidence of community-level air quality impacts of potential health concern, making screening-level comparisons of air monitoring data with acute and chronic health-based air comparison values (HBACVs). Based on the available air monitoring data, we found that only a small fraction of measurements exceeded HBACVs, which is similar to findings from integrative air quality assessments for other shale gas plays. Therefore, the data indicate that air pollutant levels within the Marcellus Shale development region typically are below HBACV exceedance levels; however, the sporadic HBACV exceedances warrant further investigation to determine whether they may be related to specific site characteristics, or certain operations or sources. Like any air monitoring dataset, there is uncertainty as to how well the available Marcellus Shale air monitoring data characterize the range of potential exposures for people living nearby to OGD sites. Given the lesser amounts of air monitoring data available for locations within 1,000 feet of OGD sites as compared to locations between 0.2 and 1 miles, the presence of potential concentration hotspots cannot be ruled out. Additional air monitoring data, in particular more real-time data to further characterize short-term peak concentrations associated with episodic events, are needed to provide for more refined assessments of potential health risks from Marcellus Shale development.

Implications: While there is now a sizable amount of ambient air monitoring data collected nearby to OGD activities in the Marcellus Shale region, these data are currently scattered among different databases and studies. As part of an integrative assessment of Marcellus Shale air quality impacts, ambient air data are compiled for a subset of criteria air pollutants and hazardous air pollutants that have been associated with OGD activities, and compared to acute and chronic health-based air comparison values to help assess the air-related public health impacts of Marcellus Shale development.  相似文献   


18.
ABSTRACT

Present paper represents the spatio-temporal variation of air quality and performances of geostatistical tools for the identification of pollutants zone in various districts of Assam (India). Geographic Information System (GIS) and geostatistical analysis were utilized to estimate the spatio-temporal variations (2015–2017) of gaseous and particulate air pollutants. Data of 23 fixed monitoring stations were collected from the Central Pollution Control Board (CPCB). It was observed that SO2 and NOx concentrations are the major pollutants to the deterioration of air quality in Assam State. Exploratory data analysis was considered for the determination of spatial and temporal patterns of air pollutants. Air Quality index (AQI) was calculated based on the air pollutants and particulate matter. Radial Basis Function (RBF) interpolation techniques were used to analyze the spatial and temporal variation of air quality in Assam. Cross-validation is applied to evaluate the accuracy of interpolation methods in terms of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nash–Sutcliffe Equation (NSE) and Accuracy Factor (ACFT). In 2015, the high value of AQI portrayed in the central and northeast of the state. In 2016, the central and entire east of the study area was recorded the highest value of AQI. In 2017, it was observed that mostly the central part of the state recorded the high value of AQI. The spatio-temporal variation trend of air pollutants provides sound scientific basis for its management and control. This information of air pollution congregation would be valuable for urban planners and decision architects to efficiently administer air quality for health and environmental purposes.  相似文献   

19.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

20.

Introduction  

Inorganic ion concentrations in event-based wet-only precipitation samples collected during the south-west (SW) monsoon at an urban location in Western India, Ahmedabad between July 2000 and September 2002 were measured by Rastogi and Sarin (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号