首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Effects of water contamination with perchlorate and hexavalent chromium [Cr (VI)] on the mosquito Culex quinquefasciatus were assessed. The chronic (10-day) LC50s values for perchlorate and chromium were 74+/-8.0 mg/L and 0.41+/-0.15 mg/L, respectively. Relative Growth Index, a measure of growth and mortality rates in a population, was significantly reduced within 5 days for levels of perchlorate as low as 25 mg/L and for levels of chromium as low as 0.16 mg/L. Neither compound altered wing length of surviving adults. In combination, contaminants were synergistic, causing 14% more mortality than predicted. Acute (24-h) LC50 values for perchlorate and Cr (VI) were 17,000+/-3200 and 38+/-1.3 mg/L, respectively. Effects on mosquito larvae in contaminated environments are likely to be observed for Cr (VI) but not for perchlorate, which generally does not occur at levels as high as those shown here to affect larval mosquitoes.  相似文献   

2.
Environmental Science and Pollution Research - Upon screening for novel and potential biocompounds with larvicidal activities, we successfully isolated hamisonine (HMSN) a limonoid compound from...  相似文献   

3.
The insecticidal activity of different extracts (aqueous, methyl alcohol, hexane and petroleum ether) of the aerial part of Scrophularia canina against the second and fourth-instar larvae and adult females of Culex pipiens molestus was investigated. The larvicidal activity of all the extracts was tested in the dose range from 7.8 to 1000 ppm. The highest toxicity was exhibited by the petroleum ether extract against second-instar larvae (48 h LC?? = 23.5 ppm) and by the hexane extract against fourth-instar larvae (48 h LC?? = 23.6 ppm). Methyl alcohol and aqueous extracts did not show any larvicidal activity. Sub-lethal doses of petroleum ether and hexane extracts induced increasing mortalities during 13 days after treatment but did not affect the duration of larval and pupal stages. In persistence tests, the hexane extract retained a satisfactory larvicidal activity after a 10-day period of test solutions incubation. Topical treatment of adult females with doses from 0.25 to 8 μg per mg of female body weight of different extracts showed a similar toxicity for the hexane (24 h LD?? = 1.7 μg mg?1) and petroleum ether (24 h LD?? = 1.8 μg mg?1) extracts which were significantly more toxic than methyl alcohol extract (4.2 μg mg?1). Aqueous extract did not induce adult mortality. The marked mosquitocidal activity of petroleum ether and hexane extracts of the aerial part of S. canina against different life stages of C. pipiens molestus is promising to develop effective alternatives to synthetic insecticides.  相似文献   

4.
5.
A novel green approach for the synthesis and stabilization of silver nanoparticles (AgNPs) using water extract of Leucas martinicensis leaf has been developed. As obtained, the nanoparticles are characterized by UV-visible (UV-Vis), transmission electron microscope (TEM), and X-ray diffraction (XRD). The crystalline nature of the AgNPs is confirmed by the prominent peaks in the XRD pattern. FTIR spectra suggest that the possible biomolecules are responsible for the efficient stabilization of the sample. The effects of leaf quantity on the biosynthesis of AgNPs are investigated by UV-Vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by L. martinicensis leaf. This is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time through UV-Vis spectrophotometer. Moreover, the antibacterial activity of synthesized AgNPs against Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Escherichia coli are screened.  相似文献   

6.
Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol.
Graphical abstract
  相似文献   

7.
Biosynthesis of nanoparticles has received increasing attention due its effective mode of action, eco-friendly preparation methodology, and less cytotoxicity. In the present study, silver nanoparticles (AgNPs) from aqueous seed extract of Myristica fragrans (nutmeg) were characterized. Gas chromatography–mass spectrometry (GC–MS) analysis revealed the presence of bioactive components acts as effective in reducing and capping agents for converting AgNO3 to AgNPs. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 420 nm, which is the characteristic peak of AgNPs. The functional molecules present in the M. fragrans seed extract and their interaction with the AgNPs were identified by the Fourier transform infrared spectroscopy (FT-IR) analysis. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver nanoparticle and diameter was calculated using Scherrer’s equation. Transmission electron microscope (TEM) image showed spherical shaped particles with an average size of 25 nm. The scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) confirmed the presence of elemental silver. The antibacterial activity of biosynthesized AgNPs was evaluated against multidrug-resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi) according to agar well diffusion, MIC (minimum inhibitory concentration), and IC50 (inhibitory concentration 50%). The results confirm that bacterial growth was significantly reduced in a dose-dependent manner. Further, the cytotoxic effect of biosynthesized AgNPs on rat spleenocytes was analyzed. Thus, it is suggested that the nutmeg-biosynthesized AgNPs could be a lead drug and used effectively to control the MDR S. Typhi, thereby reducing public health issues and environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号