共查询到20条相似文献,搜索用时 15 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2001,35(2):231-243
In 1997, a measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki. Hourly mean concentrations of CO, NOx, NO2 and O3 were measured at street and roof levels, the latter in order to determine the urban background concentrations. The relevant hourly meteorological parameters were measured at roof level; these included wind speed and direction, temperature and solar radiation. Hourly street level measurements and on-site electronic traffic counts were conducted throughout the whole of 1997; roof level measurements were conducted for approximately two months, from 3 March to 30 April in 1997. CO and NOx emissions from traffic were computed using measured hourly traffic volumes and evaluated emission factors. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx (fractional bias were −4.2 and +4.5%, respectively), but the model overpredicted the measured NO2 concentrations (fractional bias was +22%). The agreement between the measured and predicted values was also analysed in terms of its dependence on wind speed and direction; the latter analysis was performed separately for two categories of wind velocity. The model qualitatively reproduces the observed behaviour very well. The database, which contains all measured and predicted data, is available for further testing of other street canyon dispersion models. The dataset contains a larger proportion of low wind speed cases, compared with other available street canyon measurement datasets. 相似文献
2.
《Atmospheric environment(England)》1986,20(3):455-459
Measurements of wind velocities in an urban street canyon with a height-to-width ratio of about 1.4 were made when ambient winds aloft were approximately perpendicular to the street. The mean wind velocities were determined by analysis of trajectories of tracer balloons that were released in the canyon and photographed in rapid sequence. The trajectories indicate the presence of a primary vortex cell within the canyon, provided the ambient wind velocity exceeds 1.5–2.0 m s−1. Measurements with hot-wire anemometers suggest that vehicular traffic at the street level is significant in increasing turbulence up to heights of approximately 7 m. 相似文献
3.
《Atmospheric environment (Oxford, England : 1994)》2007,41(1):221-226
The pollutant dispersion in a street canyon has been described in this work by using an isothermal two-dimensional lattice model coupled to the Smagorinsky sub-grid scale model. The influence of the ratio between the height of the upstream and downstream canyon walls, as well as the gap distance between them on the flow pattern, was analyzed considering the situations of ‘open country’ or isolated street canyon and ‘urban roughness’ in which the influence of an urban fabric was considered. The model determined the trajectories of a large number of passive tracer particles released in the computational domain, making it easy to visualize the flow regimes established in each case. The results agreed with the observations reported from the experiments showing a strong influence on the flow inside the canyon exerted by the upstream landscape configuration. 相似文献
4.
5.
《Atmospheric environment (Oxford, England : 1994)》2001,35(24):4089-4098
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants. 相似文献
6.
《Atmospheric environment (Oxford, England : 1994)》2001,35(32):5681-5691
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants. 相似文献
7.
《Atmospheric environment (Oxford, England : 1994)》2007,41(5):934-949
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant. 相似文献
8.
9.
Dusica J. Pesic Milan DJ. Blagojevic Nenad V. Zivkovic 《Environmental science and pollution research international》2014,21(2):1270-1284
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon. 相似文献
10.
《环境工程学报》2015,(7)
为了建立一个能够快速且可靠地模拟街区尺度交通污染物三维分布的模型以应对实时在线模拟的需求,将城区的最小单位假定为两侧建筑物等高的长街区(街道峡谷),基于CFD模型对街道峡谷内部气流场的模拟结果,对街道峡谷内不同区域的气流(U、V、W 3个分量)与街区几何比例(高宽比HW和长宽比LW)、背景风(u和v 2个分量)的数值关系进行了回归分析。分析结果显示,分量U在非靠近边界的区域与街区几何比例和背景风线性相关性较好;分量V则在靠近地面或顶面的区域;分量W则是在靠近墙面的区域。利用回归分析得到的数值关系构建的参数化方法可以计算得到近似于CFD模型模拟结果的街道峡谷内部气流场。在此基础上,基于高斯模型建立了一个参数化模型,并以黑炭气溶胶BC为例对参数化模型进行评估,评估结果表明,参数化模型具有一定的实用价值。 相似文献
11.
采用数值模拟,研究不同风向角α (α=0°、45°、90°)及道路屏障位置(中间单路障和两侧双路障)对街道峡谷内机动车尾气污染物扩散的影响。数值模拟采用标准 k-ε 湍流模型且Sct选择0.3时,计算结果与风洞实验结果较好吻合。结果表明,2种路障布置方式可有效降低人行道内污染物浓度,特别是,当α=45°时,污染物浓度最多可降低46.23%。同时,风向角α对街道峡谷内污染物扩散影响较大。当 α=90°时,空气流通不良使得污染程度最为严重,且污染集中在背风侧近地面。单路障比双路障布置对污染物扩散影响更大,前者使污染物主要集中在街道中心背风侧,其他位置浓度明显降低;双路障时仅在一定范围内改善人行道内空气品质,但对街道整体污染物分布影响不大。 相似文献
12.
Analysis of air quality within a street canyon using statistical and dispersion modelling techniques
《Atmospheric environment (Oxford, England : 1994)》2007,41(39):9195-9205
The dispersion model, ADMS-Urban, alongside the statistical modelling technique, generalized additive modelling, have been used to predict hourly NOx and nitrogen dioxide (NO2) concentrations at a busy street canyon location and the results compared with measurements. Generalized additive models (GAMs) were constructed for NO2 and NOx concentrations using input data required to run ADMS-Urban. Bivariate polar plots have been produced from the wind flow (speed and direction) and pollution data (measured and predicted concentrations) to provide further information regarding the complex wind-pollutant interactions in an urban street canyon. The predictions made with the GAMs show excellent agreement with measured concentrations at this location, reproducing both the magnitude of NOx and NO2 concentrations and also the wind speed-wind direction dependence of pollutant sources within the canyon. However, the predictions made with ADMS-Urban under-estimated the measured NOx by 11% and NO2 by 21% and there are clear differences in the bivariate polar plots. Several sensitivity tests were carried out with ADMS-Urban in an attempt to produce predictions in closer agreement to those measured at Gillygate. Increasing the primary NO2 fraction in ADMS-Urban (from 10% to 20%) had a considerable effect on the predictions made with this model, increasing NO2 predictions by ∼20%. However, the bivariate plots still showed major differences to those of the measurements. This work illustrates that generalized additive modelling is a useful tool for investigating complex wind-pollutant interactions within a street canyon. 相似文献
13.
通过对反向传播人工神经网络的算法和网络结构的研究,发现拟牛顿算法训练速度较快,能够较好地接近误差目标值,同时建立了包括输入层、隐含层、输出层的人工神经网络三层拓扑结构。通过对街道峡谷人工神经网络的训练,模拟计算了街道峡谷NOx浓度分布值。结果显示,训练误差和测试误差比为1.11,训练样本的模拟值与实测值的相关系数为0.93,测试样本的模拟值与实测值的相关系数为0.87,模拟值与实测值的相关系数均高于显著水平为α=0.05与α=0.01所对应检验性表的相关系数临界值。该模型能够用于街道峡谷污染物浓度的模拟计算,具有较好的泛化能力。 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2001,35(33):5779-5788
Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of “visibility”, was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. 相似文献
15.
Fabio Galatioto Margaret C. Bell 《Environmental science and pollution research international》2013,20(7):4750-4765
This paper describes an in-depth analysis to investigate the huge variation in the measured roadside air-pollutant concentrations of carbon monoxide and nitrogen dioxide in terms of the traffic flow levels, the orientation of the street to the prevailing wind, the wind speed, temperature and barometric pressure. The work has attempted to develop generic parameters that can be applied to other urban areas. However, in the absence of a measure of congestion at the site in Palermo (Italy), the methodological approach proposed used the simultaneous noise measurements, in units of decibels (B), to help parameterise a generic congestion indicator in terms of the traffic flow. The potential transferability of the approach was demonstrated for a site in Marylebone Road, London (UK), given the similarity of the two study sites, canyon shape, traffic characteristics and road orientation. The results showed that, within the range of data available, noise levels could be used as a proxy for flow change on the shoulders of the peak hour and hence congestion and a generic relationship with factors statistically significant at 99 % confidence allows roadside concentrations due to traffic to be estimated with a regression coefficient of R 2?=?0.73 (R?=?0.85). The research demonstrates that whilst there are indeed underlying relationships that can explain the roadside concentrations based on traffic and meteorological conditions, evidence is presented that confirms the complexity of the physical and chemical processes that govern roadside concentrations. 相似文献
16.
《Atmospheric environment (Oxford, England : 1994)》1999,33(24-25):3961-3971
A wind tunnel study was performed to examine some turbulent characteristics and statistical properties of the concentration field developing from the steady release of a tracer gas at street level in a canyon amidst urban roughness. The experiment was conducted with the approaching wind direction perpendicular to the street axis and, with a street width to building height aspect ratio equal to one. Concentration time series were recorded at 70 points within the test street cross-section and above. Mean concentrations, variances and related turbulent quantities, as well as other statistical quantities including quantiles were computed. Concentration spectra and autocorrelation functions were also examined. The emphasis is put here on the results concerning mean concentrations and the variance of concentration fluctuations. The main objective of this paper is to put forward potential benefits of the experimental approach taken in this study. Through a simple and already widely studied configuration it is aimed to show how, for modelling purposes, this approach can help improving our understanding of the mechanisms of dipersion of pollution from car exhausts in built-up areas and, with further measurements, how it could assist in drawing specifications for siting monitoring networks. 相似文献
17.
Prashant Kumar Alan Robins Rex Britter 《Atmospheric environment (Oxford, England : 1994)》2009,43(38):6110-6118
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete. 相似文献
18.
可吸入颗粒物影响及危害不断增大,微气候环境也越来越引起学者们的关注。对覆盖高架路的街道峡谷颗粒物浓度分布进行了研究;实地测量在风温、有无高架、建筑物附近植被覆盖程度、高度四种情况影响下颗粒物在街谷内分布情况,引入相关性分析,同时进行了CFD数值模拟研究。实测结果表明,早高峰时段街谷内达到5级重度污染;有高架路覆盖的街谷,内部颗粒物浓度高于无高架路覆盖的街谷;颗粒物浓度随高度增加逐渐降低,但是在刚高过高架路时,浓度会突增;街道植被覆盖程度越大,颗粒物浓度越低。相关性分析表明,颗粒物浓度与高度呈负相关,颗粒物浓度与温度呈负相关。模拟结果表明,有高架路覆盖的街谷,在高架路周围会形成涡流,导致颗粒物不容易离开街谷。 相似文献
19.
为了获得城市冠层内高层建筑群的高度变化对城市颗粒物污染的作用情况,采用大涡模拟方法研究了不同高层建筑群的街谷形状因子对街谷内空气流动与污染物扩散规律的影响。结果表明:在高层建筑群上方形成一个顺时针旋涡,旋涡中心位于城市峡谷内靠近高层建筑群背风处;随着街谷形状因子的增大,高层建筑群的滞留效应增强,导致高层建筑物上方的剪切层湍动能增强;当形状因子为2.5时,湍动能达到1.9 m2·s-2,此时城市街谷内可吸入颗粒物的稀释扩散条件变差;在涡旋和气流夹带作用下,可吸入颗粒物浓度在垂直方向上分布具有明显的分层现象,大量可吸入颗粒物聚集于低建筑迎风面底部。不同街谷形状因子下街谷内空气流动与污染物扩散规律的探明将为有关部门制定相应规划提供参考。 相似文献
20.
Fabio Murena Giuseppe Favale Sotiris Vardoulakis Efisio Solazzo 《Atmospheric environment (Oxford, England : 1994)》2009,43(14):2303-2311
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k–? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons. 相似文献