首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The toxic effects of alphamethrin on catalase (CAT) and protein profile in liver, heart, kidney, and intestine of the freshwater catfish Clarias batrachus have been investigated. CAT activity and specific activity decreased in liver, heart, kidney, and intestine on exposure of sublethal concentration of alphamethrin for 14 days. Similarly, protein content declined in different tissues of the fish exposed to alphamethrin. Maximum decline in CAT activity was in liver, while minimum decrease was in intestine. Maximum reduction in CAT specific activity was in kidney and minimum in heart. Protein content declined maximum in liver and minimum in heart. Alphamethrin-induced reduction in CAT activity and specific activity might be due to binding of pesticide with enzyme or by inhibiting the enzyme synthesis. The reduction in protein content might be due to extensive proteolysis. The results suggested alphamethrin-induced reduction in oxidative defense and protein profile of the catfish.  相似文献   

2.
Summary In previous publications, we reported that sinusoidal varying magnetic fields (SVMF) modify the activity and dynamics of the malignancy marker adenosine deaminase, and enhance the proliferation of chick embryo fibroblasts (CEF). While the SVMF examined by us (50, 60 & 100 Hz / 0.06–0.7 mT) were all below kT, they may have the potential of altering chemical processes in which excited radicals are involved. We tested this hypothesis in two experimental systems: CEF in culture and Spirodela oligorrhiza (Lemnaceae) (a small aquatic plant, commonly known as Duckweed). CEF were exposed to SVMF of 100 Hz/0.7 mT for 24 h. The addition of the exogenous radical scavengers catalase, superoxide dismutase or vitamin E to the cells during exposure significantly suppressed enhancement of cell proliferation caused by the field (by 79, 67 and 82%, respectively, as evaluated by the MTT colorimetric assay). 15N NMR analysis of Duckweed plants fed by 15N-labeled ammonium chloride and exposed to SVMF at 60 and 100 Hz/0.7 mT for 24 h, revealed augmented alanine production. Alanine did not accumulate in the absence of SVMF. The addition of vitamin C, a radical scavenger, reduced alanine production by 82%. Exposure to SVMF resulted in specific metabolic stress effects in Duckweed plants and enhanced proliferation of CEF. In both cases, it is suggested that free radicals are involved.  相似文献   

3.
为了解盐度渐变对黄条鰤(Seriola aureovittata)渗透调节的影响,设置自然海水(对照组盐度为29),5,10,15,20,35六个盐度梯度,并对不同盐度下幼鱼鳃丝Na+/K+-ATP 酶活力、离子浓度、渗透压进行了检测和分析。结果显示:在盐度5~35,黄条鰤尿、血清、血浆的渗透压均随盐度升高而升高,盐度为35时渗透压均为最高,其中尿的渗透压显著高于血清和血浆渗透压。在盐度从29下降的过程中,鳃丝Na+/K+-ATP酶活力、离子浓度、渗透压呈现相似的变化规律,都随着盐度的降低而呈现总体下降的趋势;盐度从29升高到35时,各检测指标中仅有尿和血浆的K+ 含量无显著变化(P >0.05),其余均显著升高(P <0.05)。实验结果表明,黄条鰤生存和繁衍的自然海水盐度29是幼鱼存活的适宜盐度,在略低的盐度20~29均能较快适应,说明在盐度渐变过程中,黄条鰤幼鱼对外界盐度变化有较强的调节能力。  相似文献   

4.
Nine heavy metals were estimated in lichen, Phaeophyscia hispidula (Ach.) Moberg, collected from 12 different sites of Dehradun, capital city, to analyze the air quality of Uttarakhand. Total metal concentration was the highest at Mohkampur Railway Crossing, Hardwar Road (42,505 μg g−1). Dela Ram Chowk, located in the center of the city, also had higher metal concentration, 34,317 μg g−1, with maximum concentration of Pb at 12,433 μg g−1, while Nalapani forest area had minimum total metal concentration (1,873 μg g−1) as well as minimum Pb level at 66.6 μg g−1, indicating anthropogenic activity, mainly vehicular activity, responsible for the increase in metal concentration in the ambient environment. In comparison with the earlier years 2004 and 2006, air pollution as indicated by similar lichen shows a considerable increase in the total metal concentration (especially Pb) in the ambient air of Dehradun city, which may be attributed to exponential rise in the traffic activity in the last 5 years.  相似文献   

5.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

6.
Used paper, a potential resource of alternative energy, can be recycled but mostly it forms a significant component of solid waste. Used office paper, foolscap paper, filter paper and newspaper have been treated with cellulase from Trichoderma reesei and Penicillium funiculosum to bioconvert their cellulose component into sugars. Both non-pretreated and pretreated paper was incubated successively with the two cellulases during four consecutive incubation periods of 1 h each. The amount of sugars released during this sequential treatment was compared with the total sugar produced during a 4 h period of continuous incubation with each enzyme system independently. Pre-treatment milling of paper proved to effectively increase the sugar formation under all incubation conditions. Successive incubation with the two enzyme systems of both non-pretreated and pretreated paper materials was more efficient than the corresponding continuous bioconversion. The highest relative sugar yield was experienced during successive treatment of pretreated materials when T. reesei cellulase initiated the degradation. However, maximum bioconversion of pretreated newspaper was obtained when P. funiculosum initiated degradation. Pretreated foolscap paper was the most susceptible substrate with maximum bioconversion when exposed to both forms of successive cellulase treatment.  相似文献   

7.
Summary Changes of the surface properties were studied in the cell wall of the yeast Saccharomyces cerevisiae Y-517 under influence of the electromagnetic field (EMF) (40.68 MHz) and lethal doses of the fungicidal antibiotic nystatin (10 μg/106 cells). Atomic force microscopy was used to study surface topography and visco-elastic properties of the cell walls. Surface carbohydrates were detected by lectins marked with gold with the help of the scanning electron microscope. Additional polysaccharide layer appeared over cell surface after EMF exposure. We suggest that electromagnetic fields resulted in the change of the cell surface, and, accordingly, the sensitivity of organisms to the antifungal antibiotics.  相似文献   

8.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

9.
Brooks, Bryan W., Susan V. James, Theodore W. Valenti, Jr., Fabiola Urena-Boeck, Carlos Serrano, Jason P. Berninger, Leslie Schwierzke, Laura D. Mydlarz, James P. Grover, and Daniel L. Roelke, 2010. Comparative Toxicity of Prymnesium parvum in Inland Waters. Journal of the American Water Resources Association (JAWRA) 46(1):45-62. DOI: 10.1111/j.1752-1688.2009.00390.x Abstract: Numerous studies have examined the impacts of Prymnesium parvum to aquatic life, but the majority of information available is from experiments or field studies performed at salinities of marine and coastal ecosystems. Ambient toxicity of P. parvum has been characterized with in vitro and in vivo models because reliable quantitation of P. parvum toxins in environmental matrices is often precluded by a lack of available analytical standards. Hemolytic activity and fish mortality assays have been used most frequently to characterize toxic conditions; however, relatively few in vivo studies employed standardized methods. Because the relative sensitivities of different taxa to P. parvum toxins in inland waters were undefined, we assessed the comparative toxicity of P. parvum filtrate from a laboratory study (20°C, 12:12 light:dark cycle, f/8 media, 2.4 psu) to several common standardized in vitro and in vivo models. After exposure to cell-free filtrate hemolytic activity (1 h EC50 = 13,712 cells/ml) and juvenile fish (Pimephales promelas) survival (48 h LC50 = 21,754 cells/ml) were the most sensitive assay responses examined, followed by rotifer (Brachionus calyciflorus) population growth rate [48 h no observable adverse effect levels (NOAEL) = 19,072 cells/ml] and cladoceran (Daphnia magna) reproduction (10-day NOAEL = 47,680 cells/ml). Green algae (Pseudokirchneriella subcapitata) growth (96 h) was not adversely affected but was instead significantly stimulated by P. parvum toxins. We further propose an initial species sensitivity distribution approach for P. parvum, which may be used to support future environmental management decisions. Our findings from these laboratory studies indicate that although fish kills are increasingly associated with P. parvum blooms occurring in inland waters, further study is required to define the influences of toxin sensitivities of phytoplankton, zooplankton, and fish communities on P. parvum bloom initiation and termination.  相似文献   

10.
Summary In this work we attained a successful cysticidal effect against Vahlkampfia hartmanni cysts using mild to moderate experimental conditions, regarding light energy delivered and concentrations of aluminium phthalocyanine tetrasulfonate (AlPCS4). The dark and phototoxic activity of AlPCS4 towards the cyst forms of Vahlkampfia hartmanni, a freshwater amoeba previously isolated from keratitic patients, were tested. The photosensitized deactivation of the cyst form of this amoeba depends mainly on the concentration of AlPCS4 and the light fluence rate as well as the total fluence delivered during the irradiation process. Upon irradiation of the cyst suspension at 100 mW/cm2 for 10 minutes in the presence of 3 μ M AlPCS4, a complete photodamaging effect on the cysts was induced. The photodamaging effect on Vahlkampfia cysts induces a state of inability of the cysts to excyst, vacuolation of the inner contents as well as a significant damage of the outer cyst wall upon microscopic examination.  相似文献   

11.
Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.  相似文献   

12.
The concentrations of copper (Cu) and lead (Pb) in, and the biomass of, the different parts of Persicaria glabra (Willd.) Gamez and Juncellus alopecuroides (Rottb.) C.B.Cl. were evaluated while grown in pots under laboratory conditions. Cu and Pb were added as sulphates (50, 100, 200, 400 mg/kg) to the pots. Heavy metal concentrations in the plants were measured by atomic absorption spectrometry. Results reveal that the biomass of J. alopecuroides (particularly roots) was higher than P. glabra, and that the growth tendency of macrophytes decreased with increasing heavy metal concentration in the soil, while in P. glabra, biomass went on increasing with the increase in copper concentration. Heavy metal accumulation in the roots was more than in aerial parts, and, therefore, barring two exceptions, the transfer factor of heavy metals from roots to aerial parts showed as less than 1, suggesting less transfer of heavy metals from roots to aerial parts. Thus, these macrophytes are efficient accumulators of trace elements, particularly J. alopecuroides, which can be recommended for biofiltration of heavy metals from contaminated soils.  相似文献   

13.
The livers and kidneys of freshwater fish species, Oreochromis niloticus and Clarias lazera, collected from sewage polluted sites (Ismailia and El-Bahr El-Azam) and industrial polluted sites (Shubra and El-Tebin) of Nile River were analyzed for different antioxidant defense enzymes. The liver and kidney glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) were higher in O. niloticus captured from all the polluted areas compared to the control. Low GST activities were found in 33.3%, 60% and 53% in the livers and 100%, 80% and 53% in the kidneys of C. lazera captured from El-Bahr El-Azam, Shubra and El-Tebin. GR and GPx activities increased in livers and kidneys of C. lazera collected from all areas except for Shubra, in which, GPx of livers and kidneys were low in 100% of C. lazera. Metals Ni, Co, Cr, Se, Cd and Pb resulting from industrial wastes and metal mining wastes were enhanced at the polluted sites. SDS-PAGE of liver and kidney of O. niloticus and C. lazera indicated the increase in bands number and intensity of protein bands with subunit molecular weights between 30–20 KDa in polluted areas. Several enzymes from glutathione system (activity and protein) constitute a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione-dependent enzymes in both fish species suggest a different susceptibility to toxins.  相似文献   

14.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   

15.
Arsenic, cadmium, chromium, and copper concentrations of the Pacific oyster,Crassostrea gigas, purchased from four different markets were determined in this project. In general, gill tissue had the highest proportion of metal contents (34%–67%) when compared with other tissue parts (mantle, viscera, and adductor muscle), except for arsenic, which showed the highest level in adductor muscle (44%). Smaller oysters (longitudinal length of soft body part less than 6 cm) had higher metal levels than larger ones (longitudinal length of soft body part more than 6 cm), except copper. None of the four metals examined showed an obvious seasonal trend, although cadmium levels seemed to be higher in autumn and winter months. Arsenic, cadmium, and copper levels in oysters purchased from different markets and different months obtained in the present study were higher when compared with past reports. Cadmium levels, as high as 10.98 mg/kg (dry weight basis) have been obtained. This approaches the safety limit that may be hazardous to human health. Continual monitoring of cadmium and other trace metals of toxicological significance to man in Hong Kong seafood is recommended.  相似文献   

16.
ABSTRACT: Fish confined to cages were used to determine the effects of effluent from a wastewater treatment plant (WWTP). Control fish were kept in cages in an aquaculture pond. Acute effects of the effluent entering the final oxidation pond of the WWTP were determined by confining channel catfish (Ictalurus punctatus) at the pond inlet; the mean total residual chlorine (TRC) concentration was 0.9 mg/l during this exposure. After 8 h, 42 percent of the fish had died and survivors had severe lesions of the skin and gills. During the first two weeks of exposure, channel catfish at the outlet of the final oxidation pond (mean TRC=0.1 mg/l) were predisposed to bacterial infection but lost the parasitic trematodes that were on the gills when the fish were placed in cages. After several weeks, exposed fish had histologic lesions, enlarged livers, and reduced growth. The presence of unidentified carcinogen(s) in the effluent of this WWTP was indicated by papillomas developing on caged black bullheads (Ictalurus melas) and hepatic-enzyme induction in channel catfish. In situ exposure of caged fish was advantageous because storage and pretreatment of water samples were not required, and exposure levels corresponded to those present in the environment. The use of cages for containment of fish during field exposure allowed confinement to the location of interest and convenient sampling of the fish. Unlike wild fish, the caged fish could be compared to control fish with the same pre-exposure history.  相似文献   

17.
Enhanced concentrations of Fe, Zn, Mn, Pb, Cu, Cd and total hydrocarbons (THC) determined in fish samples from the Cross River system, Nigeria have been associated with clinical defects (nausea, headache, hepatitis, body rashes) observed in coastal residents who are the major consumers of the fish species. Fish samples were collected from ten locations with varying degrees of exposure to human activities. Heavy metal concentrations in fish followed the sequence: Fe>Zn>Mn>Pb>Cu>Cd with the highest concentration of 243 g/g (Fe) wet weight occurring in Tympanotonus sp. Fe levels were significantly (P<0.001) higher than other metals analysed. The sequence in total hydrocarbon concentrations according to fish species was in the order of O. niloticus (55.1 g/g) > E. fimbriata > P. elongatus > Portonus sp. > C. nigrodigitatus > Tympanotonus sp. Generally, the demersal species showed a marked potential for tolerating high levels of heavy metals while the pelagic species showed preference for the accumulation of hydrocarbons. The degree of contamination depended on pollutant type, fish species, sampling location, trophic level and their mode of feeding. The persistent accumulation and tolerable potential of Tympanotonus, Portonus and P. elongatus suggest that they might be effectively utilized as self-integrating indicators for time-series monitoring of the rate of recovery of the impacted ecosystem by heavy metals. Possible sources of pollutant include leachates from municipal dumps, used crankcase oils from fluvial discharges (mechanic workshops) and occasional oil spills.  相似文献   

18.
Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.  相似文献   

19.
Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality.  相似文献   

20.
The Ozegahara peatland, in the Nikko-Oze National Park in Japan, is ecologically significant because of its oligotrophic environment; it is one of the most strictly preserved areas in the country. The isotope ratio of nitrogen (15N/14N) and carbon (13C/12C) and C/N ratio of peat moss (Sphagnum spp.) and sundew (Drosera rotundifolia) in the peatland were analyzed. The correlation of the isotope ratio with some parameters (sundew population density, number of trapped insects, water level, bog myrtle coverage, and visitor density) was investigated. The nitrogen isotope ratio of sundew showed the most significant covariation with visitor density, where sundew from lunch areas or along busy walkways showed a higher nitrogen isotope ratio. The nitrogen isotope ratio of peat moss covaried, not only with route traffic frequency but also with water level, bog myrtle coverage, and number of trapped insects by sundew, indicating that factors other than the visitor level influence the local nitrogen cycle. This study suggests that the nitrogen imported into the peatland by visitors is a principal factor to be monitored for the maintenance of the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号