首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Effects of long-term prescribed burning on infiltration and interrill erosion were assessed on two longleaf pine-bluestem sites in Louisiana. Treatments represented biennially-applied winter, spring, or summer burning on an upland sandy loam site for 20 years; and annual winter or spring, and biennial winter or spring burns on a bottomland silt loam site for 10 years, with unburned controls. Immediate effects of burning were a reduction in surface cover, exposing soil to raindrop impact. Burning the sandy loam site increased interrill erosion after winter and spring treatments, but produced no immediate changes in infiltration capacity or time to runoff irrespective of treatment season. Rapid recovery of under-story vegetation mitigated soil exposure. Biennial burning did not increase interrill erosion, or reduce infiltration capacity and time to runoff on the sandy loam site after 20 years. A complete herbaceous understory covered the silt loam site two years after treatment. Interrill erosion was not significantly increased, or infiltration capacity and time to runoff decreased on burning treatments than unburned controls on the silt loam site. Litter biomass was important in predicting interrill erosion. No surface cover condition could be linked to variability in infiltration capacity. This study provides evidence for the resiliency of a longleaf pine-bluestem association to prescribed burning.  相似文献   

2.
ABSTRACT: A survey was made to determine the status of formal education in wildland hydrology by colleges and universities in the United States, Canada, and Mexico. As of December 1977 nine institutions offered the B.S. degree, 18 the M.S. degree, and 17 the degree of Ph.D. with a major or minor in watershed management, forest hydrology, or range hydrology. In addition, 8 other schools offer a minor in watershed management. The survey indicated 44 schools in the United States offer a total of 157 courses, five schools in Canada offer 24 courses, and 1 in Mexico offers one course in the related areas. The survey illustrated rapid growth in education programs and it is anticipated that growth will continue.  相似文献   

3.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

4.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

5.
6.
ABSTRACT: Based on field surveys and analysis of road networks using a geographic information system (GIS), we assessed the hydrologic integration of an extensive logging-road network with the stream network in two adjacent 62 and 119 km2 basins in the western Cascades of Oregon. Detailed surveys of road drainage for 20 percent of the 350 km road network revealed two hydrologic flow paths that link roads to stream channels: roadside ditches draining to streams (35 percent of the 436 culverts examined), and roadside ditches draining to culverts with gullies incised below their outlets (23 percent of culverts). Gully incision is significantly more likely below culverts on steep (< 40 percent) slopes with longer than average contributing ditch length. Fifty-seven percent of the surveyed road length is connected to the stream network by these surface flowpaths, increasing drainage density by 21 to 50 percent, depending on which road segments are assumed to be connected to streams. We propose a conceptual model to describe the hydrologic function of roads based on two effects: (1) a volumetric effect, increasing the volume of water available for quickflow and (2) a timing effect, altering flow-routing efficiency through extensions to the drainage network. This study examines the second of these two effects. Future work must quantify discharge along road segments connected to the stream network in order to more fully explain road impacts on basin hydrology.  相似文献   

7.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

8.
ABSTRACT A comprehensive mathematical watershed model containing a complete soil moisture accounting system was used to simulate the hydrologic processes measured in one of the weighing lysimeters at Coshocton, Ohio. Data from a four-year rotation were used to calibrate the parameters initially selected for the model. Data from the succeeding four years were used to evaluate the predictions. Reasonable agreement was obtained between observed and predicted percolation and evapo-transpiration values.  相似文献   

9.
ABSTRACT: We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snow-pack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management.  相似文献   

10.
ABSTRACT: Integrated watershed ecosystem studies in National Parks or equivalent reserves suggest that effects of external processes on “protected” resources are subtle, chronic, and long-term. Ten years of data from National Park watersheds suggests that temperature and precipitation changes are linked to nitrogen levels in lakes and streams. We envision measurable biotic effects in these remote watersheds, if expected climate trends continue. The condition of natural resources within areas set aside for preservation are difficult to ascertain, but gaining this knowledge is the key to understanding ecosystem change and of processes operating among biotic and abiotic ecosystem components. There is increasing evidence that understanding the magnitude of variation within and between such processes can provide an early indication of environmental change and trends attributable to human-induced stress. The following four papers are case studies of how this concept has been implemented.* These long-term studies have expanded our knowledge of ecosystem response to natural and human-induced stress. The existence of these sites with a commitment to gathering “long-term” ecosystem-level data permits research activities aimed at testing more important hypotheses on ecosystem processes and structure.  相似文献   

11.
Three fundamental concepts linking drainage basin characteristics, stream behavior, and management of watersheds are deduced from field data and observations. An electrical analogy of a watershed clarifies definitions and broadens understanding of this complex natural resource. The three basic principles deal with (1) the interrelationships of watershed morphology, constitution, and appearance; (2) the nature of the control man can exert over runoff-influencing forces, and (3) the efficiency of watershed management efforts. Recognition of these principles can assist educators, managers, planners and researchers to more fully inform students and to more effectively guide and evaluate management decisions.  相似文献   

12.
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific.  相似文献   

13.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

14.
ABSTRACT: Road building, clearcutting 25 percent of the watershed, and slash disposal by broadcast burning or by natural decomposition caused changes in water quality of two small streams in the Bull Run Watershed in Oregon, which supplies water to the Portland, Oregon, metropolitan area. Concentrations of suspended sediment increased slightly, primarily owing to construction of a permanent logging road that crossed streams. Changes in nutrient cycling occurred due to logging and slash disposal in both watersheds where cutting was done. NO3-N concentrations, which increased most where logging residue was left to decompose naturally, increased more than sixfold and commonly exceeded 100 pg/i during the October-June high-flow season for seven years after logging. Where logging slash was broadcast burned, NO3-N concentrations increased roughly fourfold, but rarely exceeded 50 μg/l, and increases had mostly disappeared six years after slash burning. Changes in outflows of cations and other anions were not apparent. Annual maximum stream temperatures increased 2–3°C after logging, but temperature increases had mostly disappeared within three years as vegetation regrowth shaded the streams.  相似文献   

15.
16.
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip.  相似文献   

17.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   

18.
    
ABSTRACT: While much is known about the hydrology of forested mountain catchments in the Pacific Northwest, important research questions remain. For example, the dynamics of storm precipitation amounts and the modeling of catchment outflows represent a continuing research need. Without an improved understanding of the spatial and temporal aspects of storm precipitation patterns, our ability to evaluate and improve physically-based hydrologic models is limited. From a practical perspective, tens of thousands of kilometers of access roads have been constructed across forested catchments of the Pacific Northwest. Yet, few forestry research programs focus on road drainage (e.g., ditches, culverts, fords). The few studies that address this issue indicate road drainage systems need to function effectively over a wide range of flow events and terrain conditions. In addition, historical forest practices associated with hillslopes and riparian systems have altered the character of many Pacific Northwest aquatic ecosystems. If restoration of these systems is to be effective, research efforts are needed to better understand the linkages between riparian forests, geomorphic processes, and hydrologic disturbance regimes.  相似文献   

19.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   

20.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号