首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
根据南通市2016和2017年冬季大气多参数站自动监测PM2.5数据和在线离子色谱分析仪Marga监测的PM2.5中水溶性离子数据,分析了南通市冬季PM2.5中水溶性离子污染特征。结果表明,南通市2016和2017年冬季,ρ(PM2.5)分别为58和54μg/m 3,均高出其年均值(14μg/m^3);ρ(水溶性离子)总占ρ(PM2.5)百分比分别为74.5%和74.3%;二次离子ρ(NO3^-、SO4^2-和NH4^+)占ρ(PM2.5)百分比分别为66.8%和66.6%;各水溶性离子占比大小依次为:NO3^-、SO4^2-、NH4^+、Cl^-、K^+、Na^+、Ca^2+、Mg^2+。对ρ(NO3^-)/ρ(SO 4^2-)分析表明,移动源已经成为南通市冬季的主要污染源,且呈逐年增强趋势。对氯氧化率和硫氧化率的分析表明,南通市冬季存在较明显的二次污染,SO2的转化程度大于NO2。除Na^+和Mg^2+外,其他离子与PM2.5均呈显著相关性,NO3^-、SO4^2-与NH4^+之间的相关系数最高,Cl^-与除Na^+外的所有阳离子均呈显著相关性。  相似文献   

2.
采用Pearson相关系数分析了2013—2016年3大典型城市北京、南京和广州的ρ(PM_(2.5))与各气象因子的关系。结果表明,3个城市ρ(PM_(2.5))与各风速因子最大的相关系数依次为-0.44,-0.29和-0.37,与各气温因子最大的相关系数依次为-0.44,-0.33和-0.37,气压与南京和广州的ρ(PM_(2.5))正相关,气压因子最大的相关系数分别为0.25和0.34,湿度与北京ρ(PM_(2.5))正相关,与广州ρ(PM_(2.5))负相关,湿度因子最大的相关系数分别为0.49和-0.36,日照时数与北京ρ(PM_(2.5))相关系数为-0.46,降水量与南京和广州ρ(PM_(2.5))相关系数分别为-0.20和-0.24;采用逐步线性回归方法建立城市次日ρ(PM_(2.5))与气象因子的预测模型,复合相关系数分别为0.722 8,0.770 6和0.809 9。模型预测3个城市2016年PM_(2.5)年均值分别偏高4,5和3μg/m3,日均值平均相对误差为±45.6%,±32.9%和±26.0%,模型对高ρ(PM_(2.5))普遍低估。  相似文献   

3.
利用北京市87个噪声自动监测站点监测数据,分析2018年除夕夜(2月15日18:00—2月16日2:00)全市噪声排放水平。通过比较2013—2018年除夕夜噪声排放强度,结合北京市细颗粒物浓度变化分析,表明2018年除夕夜北京市噪声污染排放显著降低,2013—2018年噪声污染排放存在时空分布特征,除夕夜细颗粒物污染变化与噪声污染变化趋势较为吻合,作为主要污染源的烟花爆竹燃放在受到政策的限制后,除夕夜北京市声环境和空气环境同比大幅改善。  相似文献   

4.
为研究大气中细颗粒物(PM2.5)在中低浓度水平下的污染特征及来源,于2018-2020年在上海市浦东新区采用在线气体组分及气溶胶监测系统对大气ρ(PM2.5)及其水溶性离子的质量浓度进行了在线连续观测.结果表明,2018-2020年ρ(PM2 5)变化总体均呈现冬季较高,春、秋季其次,夏季较低的特征.PM2.5中水溶...  相似文献   

5.
监测分析了南京市浦口区典型工业区(2016年12月—2017年10月)PM 2.5中金属元素的浓度,分析了季节差异及来源,评价了健康风险。结果表明,PM 2.5年均值为61.24μg/m 3,全年有33.33%的天数超过《环境空气质量标准》(GB 3095—2012)的日均限值。绝大多数金属元素的平均值为:冬季>春季>秋季>夏季。As的全年平均值为(2.01±1.09)ng/m 3,较为接近我国环境标准限值。PM 2.5中金属元素主要来自工业排放、自然过程、金属冶炼及交通活动,Cr、Ni、As、Cd、Cu、Zn和Pb的富集性较高。健康风险评价结果显示,Mn的非致癌风险最高,所有金属对儿童和成人的总非致癌风险值为0.0884,低于安全阈值1;Cr(Ⅵ)的致癌风险最高,所有金属对儿童和成人的总致癌风险分别为6.23×10-7和2.49×10-6,均在可接受水平内。  相似文献   

6.
2019年10月—2020年10月在江淮平原东部城市淮安开展持续1 a的PM2.5采样分析,研究PM2.5的组成和污染特征。结果表明:淮安市大气PM2.5年均质量浓度为(52.2±27.1)μg/m3,是国家二级标准(35 μg/m3)的1.5倍,其中冬季最高,为(67.5±36.4)μg/m3,是国家二级标准的1.9倍;PM2.5中的ρ(NO3-)/ρ(SO2-4)=1.76,说明机动车尾气排放对淮安市PM2.5的影响较大;PM2.5中平均ρ(OC)/ρ(EC)值为4.1±1.1,说明淮安市PM2.5受大气二次生成影响明显;Si、Al、Ca等无机元素的质量浓度较高,表明淮安须加大对扬尘污染的治理力度。  相似文献   

7.
空气细颗粒物(PM2.5)污染特征及其毒性机制的研究进展   总被引:14,自引:2,他引:14  
细颗粒物(PM2.5)是指空气动力学直径≤2.5μm的颗粒物,其表面吸附大量的有毒有害物质,并可通过呼吸沉积在肺泡,甚至可通过肺换气到达其他器官.由于细颗粒物的重要性,美国EPA已经于1997年颁布了细颗粒物的空气质量标准,年均值为0.015mg/m3,日均值为0.065mg/m3,然而我国至今仍未制定细颗粒物空气质量标准.颗粒物上吸附的化学组分主要可分成自然来源及燃煤或燃油等人为污染来源两大类,特别是来自工业性和居住区燃煤及汽车燃油尾气.空气细颗粒物污染表现为形态各异、成分复杂等特征.细颗粒物有明显的毒性作用,可引起机体呼吸系统、免疫系统等较为广泛的损害.细颗粒物与心肺疾病密切相关,如增加入院率、急诊次数、呼吸疾病及症状增加、肺功能下降,甚至于过早死亡.简要概述了细颗粒物的污染特征及其毒性机制研究进展.  相似文献   

8.
于2019年10月-2020年2月在盐城市开展大气PM2.5离线监测,对PM2.5的浓度变化、质量平衡、组分及来源进行了分析.结果表明,监测期间盐城市ρ(PM2.5)月均值为43.32~62.59 μg/m3,其中1月最高;监测期间ρ(PM2.5)平均值为54.25 μg/m3,质量重建后该值为52.38 μg/m3,...  相似文献   

9.
基于MODIS AOD遥感数据,采用多元线性回归模型对PM2.5地面监测数据进行模拟估算,同时加入降水量、相对湿度等气象因子以提高模型精度,结合GIS空间分析技术,得到2015—2016年京津冀地区空间连续的PM2.5浓度分布。结果表明:利用多元线性回归模型反演PM2.5浓度效果较好,R 2均在0.59~0.84之间。在时间上,京津冀地区PM2.5浓度呈现出夏季最低、秋季稍高、冬春两季最高的变化趋势;在空间上,2015年和2016年京津冀地区PM2.5浓度有明显的区域差异,均呈现出西北低、东南高的分布格局,大致与燕山山脉和太行山脉走向一致。  相似文献   

10.
基于2018年常州市14个自动监测点位ρ(PM2.5),采用变异函数法和正交经验分解法(EOF)对其ρ(PM2.5)的空间变异性和逐日质量浓度序列的时空分区特征进行了研究。结果表明,常州市PM2.5高值均发生在11和1月,其次为2,4和5月,18:00后至次日上午时段PM2.5易出现峰值;ρ(PM2.5)具有较大的空间差异性,其在东西方向上的空间异质性程度要大于南北方向,随着站点之间空间距离的增加,各个站点局地污染分布因素的差异性逐渐增大;受市区重点污染源分布和气象条件影响,ρ(PM2.5)总体呈现沿东北向西南区域依次递减的分区特征,高值区位于常州市区中心偏北、偏东地区,低值区位于市区西南部区域,且具有明显的季节变化特征。  相似文献   

11.
北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应   总被引:1,自引:0,他引:1  
利用2013年1月—2014年12月北京地区PM_(2.5)和PM_(10)监测数据和同期近地面气象观测数据,采用非参数分析法(Spearman秩相关系数)研究了北京地区PM_(2.5)和PM_(10)的浓度对不同季节地面气象因素的响应。结果表明:北京地区大气颗粒物浓度水平具有明显的季节特征,冬季大气颗粒物污染最严重,夏季最轻。不同季节影响颗粒物浓度水平的气象因素各不相同,其中风速和日照时数为主要影响因素。PM_(2.5)和PM_(10)质量浓度对气象因素变化的响应程度也有较大区别,PM_(2.5)/PM_(10)比值冬季最高,PM_(2.5)影响最大,春季最低,PM_(10)影响最大。这些结论可对制订科学有效的大气污染控制策略提供参考。  相似文献   

12.
冬季大气中PM_(10)和PM_(2.5)污染特征及形貌分析   总被引:6,自引:4,他引:2  
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。  相似文献   

13.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。  相似文献   

14.
以四川省南充市为研究区域,通过实地调研、现场测试及结合统计年鉴等获得数据,采用排放因子法计算南充市2014年大气PM_(10)、PM_(2.5)排放量并建立排放清单。结果表明,南充市2014年扬尘源、移动源、生物质燃烧源、化石燃料固定燃烧源、工艺过程源排放总量PM_(10)分别为85 187、1 777、9 175、2 417、3 519 t,PM_(2.5)分别为16 093、1 619、7 322、914、1 585 t,PM_(10)贡献率分别为83.5%、1.7%、9.0%、2.4%、3.4%,PM_(2.5)贡献率分别为58.4%、5.9%、26.6%、3.3%、5.8%。城市区域扬尘源、生物质燃烧源、移动源、化石燃料固定燃烧源、工艺过程源对PM_(10)贡献分别为60.0%、12.5%、6.3%、8.6%、12.5%,对PM_(2.5)贡献分别为41.8%、21.6%、14.4%、8.1%、14.1%。南充市2014年大气PM_(10)、PM_(2.5)排放源总量和贡献率以及区域空间分布特征均存在差异。  相似文献   

15.
西安市区大气中PM2.5和PM10质量浓度污染特征   总被引:1,自引:1,他引:1  
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。  相似文献   

16.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。  相似文献   

17.
利用2013-2017年京津冀区域13个城市PM2.5监测数据,综合探讨了该区域PM2.5浓度的时空变化特征。结果表明:京津冀区域PM2.5污染整体较重,但治理成效显著,2013-2017年区域PM2.5年均质量浓度分别为106、93、77、71、64 μg/m3,完成《大气污染防治行动计划》PM2.5浓度下降25%左右的目标;13个城市PM2.5浓度各百分位数总体呈现下降趋势,且随百分位数增大而下降速率加大,PM2.5年均质量浓度平均每年下降10.6 μg/m3,污染严重的太行山沿线城市邢台、石家庄、邯郸3个城市平均每年分别下降20.3、16.1、13.9 μg/m3;京津冀区域PM2.5重度污染天数比例分别为19.9%、16.6%、9.5%、9.0%、7.0%,呈下降趋势。2013-2017年京津冀区域PM2.5平均质量浓度与非重度污染天相比升高19 μg/m3,PM2.5重度污染天平均质量浓度较非重度污染天时高244.4%。  相似文献   

18.
2013年北京市PM2.5重污染日时空分布特征研究   总被引:1,自引:2,他引:1  
根据2013年北京市环境保护监测中心监测的PM2.5数据,系统分析了北京市重污染日PM2.5污染的时空分布特征,并利用克里格插值初步统计了全年和重污染日PM2.5不同浓度区间的国土面积。2013年全市PM2.5年均浓度为89.5μg/m3,重污染日平均浓度为218μg/m3,重污染日主要集中在冬季;PM2.5年均浓度呈现明显的南高北低梯度分布特征,而重污染日空间分布较均匀,南部及城六区存在明显的高污染区,平均浓度在180μg/m3以上;2013年北京市重污染日PM2.5平均浓度为150~250μg/m3,其对应的国土面积约为12 656 km2,PM2.5平均浓度在250μg/m3以上的国土面积约为883 km2,而全年无PM2.5平均浓度在150μg/m3以上所对应的国土面积。  相似文献   

19.
天津市PM10和PM2.5中水溶性离子化学特征及来源分析   总被引:5,自引:3,他引:5  
2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8μg/m3,占PM2.5质量浓度的39.6%。NH+4、SO2-4、NO-3等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号