首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anthropogenic emissions of SO2 and NOx for 25 Asian countries east of Afghanistan and Pakistan have been calculated for 1975, 1980, 1985, 1986 and 1987 based on fuel consumption, sulfur content in fuels and emission factors for used fuels in each emission category. The provincial- and regional-based calculations have also been made for China and India. The total SO2 emissions in these parts of Asia have been calculated to be 18.3 and 29.1 Tg in 1975 and 1987, respectively. The calculated total NOx emissions were 9.4 and 15.5 Tg in 1975 and 1987, respectively. The SO2 and NOx emissions in East Asia (China, Japan, South Korea, North Korea and Taiwan) were 23.4 and 10.7 Tg in 1975 and 1987, respectively.Keyword: Emission inventories, sulfur dioxide emissions, nitrogen oxide emissions, Asian emissions, anthropogenic emissions.  相似文献   

2.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

3.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   

4.
Yang SS  Liu CM  Liu YL 《Chemosphere》2003,52(9):1381-1388
To investigate the greenhouse gases emissions from the feeding and waste management of livestock and poultry, methane and nitrous oxide emissions were estimated from the local measurement and IPCC guidelines during 1990-2000 in Taiwan. Hog is the major livestock and is followed by goat and cattle, while chicken is the major poultry and is followed by duck and geese. Methane emission from enteric fermentation of livestock was 30.9 Gg in 1990, increased to 39.3 Gg in 1996, and then decreased gradually to 34.9 Gg in 2000. Methane emission from the waste management was 48.5 Gg in 1990, reached the peak value of 60.7 Gg in 1996, and then declined to 43.3 Gg in 2000. In the case of poultry, annual methane emission from enteric fermentation and waste management was 30.6-44.1 ton, and 8.7-13.2 Gg, respectively. Nitrous oxide emission from waste management of livestock was 0.78 ton in 1990, increased to 0.86 ton in 1996, and then decreased to 0.65 ton in 2000. Nitrous oxide emission from waste management of poultry was higher than that of livestock with 1.11 ton in 1990, 1.68 ton in 1999, and 1.65 ton in 2000. There is an urgent need to reduce methane emission from enteric fermentation and recover methane from anaerobic waste treatment for energy in livestock and poultry feeding in Taiwan.  相似文献   

5.
Satellite cartography of atmospheric methane concentrations during 2003–2004 is applied to a systematic top-down methodology to quantify large scale sources and sinks of this important greenhouse gas. Patterns of methane anomalies over South America below latitude 22 S and an assessment of the emissions from the Buenos Aires Province of Argentina are reported. The latter contains the main cattle livestock of the country together with a variety of surface conditions, both natural and man-modified, influencing methane emissions. It was found that anomalies in methane concentrations may be correlated to emission rates by a simple box accumulation-sweeping model validated by recurrent weather conditions. The model shows that the methane emission rates of the Buenos Aires Province are positively correlated with the cattle livestock corresponding to values of (190 ± 40) g d?1 per cattle head.  相似文献   

6.
Region-to-grid source–receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10–40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.  相似文献   

7.
One of the important cultural practices that affect methane and nitrous oxide emissions from tropical rice plantations is the water drainage system. While drainage can reduce methane emissions, it can also increase nitrous oxide emissions, as well as reduce yields. In this experiment, four different water drainage systems were compared in a rice field in central Thailand including: (1) continuous flooding, (2) mid-season drainage, (3) multiple drainage and (4) a local method (drainage was done according to local cultural practice) in order to find a system of drainage that would optimize yields while simultaneously limiting methane and nitrous oxide emissions. Methane and nitrous oxide emission were observed and compared with rice yield and physical changes of rice plants. It was found that drainage during the flowering period could reduce methane emission. Interestingly, nitrous oxide emission was related to number of drain days rather than the frequency of draining. Fewer drain days can help reduce nitrous oxide emission. The mid-season drainage and the multiple drainage, with 6.9% and 11.4% reduction in rice yield, respectively, had an average methane emission per crop 27% and 35% lower when compared to the local method. Draining with fewer drain days during the flowering period was recommended as a compromise between emissions and yield. The field drainage can be used as an option to reduce methane and nitrous oxide emissions from rice fields with acceptable yield reduction. Mid-season drainage during the rice flowering period, with a shortened drainage period (3 days), is suggested as a compromise between the need to reduce global warming and current socio-economic realities.  相似文献   

8.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

9.
Yang SS  Liu CM  Lai CM  Liu YL 《Chemosphere》2003,52(8):1295-1305
To investigate the greenhouse gases emissions from paddy fields and uplands, methane and nitrous oxide emissions were estimated from local measurement and the IPCC guidelines during 1990-2000 in Taiwan. Annual methane emission from 182,807 to 242,298 ha of paddy field in the first crop season ranged from 8,062 to 12,066 ton, and it was between 16,261 and 25,007 ton for 144,178-211,968 ha in the second crop season with local measurement. The value ranged from 12,132 to 17,465 ton, and from 16,046 to 24,762 ton of methane in the first and second crop season with the IPCC guidelines for multiple aeration treatments, respectively. Annual nitrous oxide emission was between 472 and 670 ton and between 236 and 359 ton in the first and second crop season, respectively. Methane and nitrous oxide emissions from uplands depend on crop, growth season, fertilizer application and environmental conditions. Annual methane emission from upland crops, vegetable, fruit, ornamental plants, forage crops and green manure crops was 138-252, 412-460, 97-100, 3-5, 4-5 and 3-51 ton, respectively. Annual nitrous oxide emission was 1,080-1,976, 1,784-1,994, 2,540-2,622, 31-54, 43-53 and 38-582 ton, respectively. Annual nitrous oxide emission ranged from 91 to 132 ton for 77,593-11,2095 ton of nitrogen-fixing crops, from 991 to 1,859 ton for 3,259,731-6,183,441 ton of non-nitrogen-fixing crops, and from 1.77 to 2.22 Gg for 921,169-1,172,594 ton of chemical fertilizer application. In addition, rice hull burning emitted 19.3-24.2 ton of methane and 17.2-21.5 ton of nitrous oxide, and corn stalk burning emitted 2.1-4.2 ton of methane and 1.9-3.8 ton of nitrous oxide. Methane emission from the agriculture sector was 26421-37914 ton, and nitrous oxide emission was 9810-11,649 ton during 1990-2000 in Taiwan. Intermittent irrigation in paddy fields reduces significantly methane emission; appropriate application of nitrogen fertilization and irrigation in uplands and paddy fields also decreases nitrous oxide emission.  相似文献   

10.
Nitrogen oxides emissions in Asia during the period 1990–2020 due to anthropogenic activity are presented. These estimates are based on the RAINS-ASIA methodology (Foell et al., 1995, Acid Rain and Emission Reduction in Asia, World Bank), which includes a dynamic model for energy forecasts, and information on 6 energy sectors and 9 fuel types. The energy forecasts are combined with process emission factors to yield NOx emission estimates at the country level, the regional level, and on a 1 degree by 1 degree grid. In 1990 the total NOx emissions are estimated to be ∼19 Tg NO2, with China (43%), India (18%) and Japan (13%) accounting for 75% of the total. Emissions by fuel are dominated by burning of hard coal and emissions by economic activity are dominated by the power, transport, and industrial sectors. These new estimates of NOx emissions are compared with those published by Hameed and Dignon (1988, Atmospheric Environment 22, 441–449) and Akimoto and Narita (1994, Atmospheric Environment 28, 213–225). Future emissions under a no-further-control scenario are also presented. During the period 1990–2020 the NOx emissions increase by 350%, to ∼86 Tg NO2. The increase in NOx emissions by sector and end-use varies between countries, but in all countries this increase is strongest in the power and transport sectors. These results highlight the dynamic nature of energy use in Asia, and the need to take the rapid growth in NOx emissions in Asia into account in studies of air pollution and atmospheric chemistry.  相似文献   

11.
CORINAIR atmospheric emission inventories are frequently used input data for air quality models with a domain situated in Europe. In CORINAIR emission inventories, sources are broken down over 11 major source categories. This paper presents spatial surrogates for the disaggregation of CORINAIR atmospheric emission inventories for input of air pollutants and particulate matter to grid or polygon based air quality model domains inside Europe. The basis for the disaggregation model was the CLC2000 land cover data to which statistical weights were added. Weights were population census data for residential emissions, employment statistics for agricultural and industrial area emissions, livestock statistics for ammonia emissions and annual aircraft movements for emissions realized by air transport. Additional road and off-road network information was used to disaggregate emissions realized by traffic. A comparison of top down produced emission estimates with spatially resolved national emission data for The Netherlands and the United Kingdom gave confidence in the present spatial surrogates as a tool for the top down production of atmospheric emission maps. Explained variance at a spatial resolution of 5 km was >70% for CO, NMVOC and NOx, >60% for PM10 and almost 50% for SO2.  相似文献   

12.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

13.
The aim of this study is to determine the atmospheric sulfur budgets of the continents in the absence of any comprehensive published work on this subject to date. In this first part the anthropogenic SO2 emission inventories of the continents are calculated on the basis of a data survey on the consumption of S-containing fossil fuels, their sulfur contents, the production statistics of SO2 emitting industrial processes, and the appropriate emission factors. It is found that at present about 2.4 Tg, 4.1 Tg, 0.7 Tg and 18.3 Tg Sy−1 are emitted in the form of SO2 from Africa, South America, Oceania and Asia, respectively. The greatest increase in the anthropogenic SO2 emission during the last decade is calculated for Asia.  相似文献   

14.
Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region’s climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01633-8.  相似文献   

15.
Monitoring data from the UK Automatic Urban and Rural Network are used to investigate the relationships between ambient levels of ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2) as a function of NOx, for levels ranging from those typical of UK rural sites to those observed at polluted urban kerbside sites. Particular emphasis is placed on establishing how the level of ‘oxidant’, OX (taken to be the sum of O3 and NO2) varies with the level of NOx, and therefore to gain some insight into the atmospheric sources of OX, particularly at polluted urban locations. The analyses indicate that the level of OX at a given location is made up of NOx-independent and NOx-dependent contributions. The former is effectively a regional contribution which equates to the regional background O3 level, whereas the latter is effectively a local contribution which correlates with the level of primary pollution. The local oxidant source has probable contributions from (i) direct NO2 emissions, (ii) the thermal reaction of NO with O2 at high NOx, and (iii) common-source emission of species which promote NO to NO2 conversion. The final category may include nitrous acid (HONO), which appears to be emitted directly in vehicle exhaust, and is potentially photolysed to generate HOx radicals on a short timescale throughout the year at southern UK latitudes. The analyses also show that the local oxidant source has significant site-to-site variations, and possible reasons for these variations are discussed. Relationships between OX and NOx, based on annual mean data, and fitted functions describing the relative contributions to OX made by NO2 and O3, are used to define expressions which describe the likely variation of annual mean NO2 as a function of NOx at 14 urban and suburban sites, and which can take account of possible changes in the regional background of O3.  相似文献   

16.
17.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   

18.

China launched the One Belt & One Road (OBOR) initiative to minimize the energy resource shortage. The China’s nearby countries are rich in energy resources especially Middle East and North Africa (MENA) and Asian countries which make them ideal locations to cooperate with China in terms of energy resources, as 42.8% of world energy consumption belongs to OBOR countries. The present study elaborates the spatial distribution pattern of energy consumption disparities and its impact on environment. To do this, an entropy approach is utilized to compute the energy consumption inequalities in OBOR and its regions. The spatial and Pareto analysis show that MENA, East, and Southeast Asian economies have the highest degree of energy consumption inequalities, while European and Central Asian economies show the lowest energy consumption inequalities in OBOR region. The long-run estimates indicate that energy consumption inequalities enhance the CO2 emission in OBOR and its region except South and Southeast Asia. Financial development also has a significantly positive impact on CO2 emission in all models for OBOR and its regions except East Asia. Based on findings, the spatial distribution analysis is applicable to maintain balance in regional energy consumption inequality within OBOR and its regions.

  相似文献   

19.
A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980–1981 to 2003–2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, NOx, N2O, SO2, PM and HC), using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg of CO2, of which 94.5% was contributed by road transport (2003–2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) of CO2, followed by Tamil Nadu 26.41 Tg (10.8%), Gujarat 23.31 Tg (9.6%), Uttar Pradesh 17.42 Tg (7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.  相似文献   

20.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号