首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems.  相似文献   

2.
Bioindicators of enhanced nitrogen deposition   总被引:8,自引:0,他引:8  
Increased deposition of atmospheric N largely from intensive agriculture is affecting biodiversity and the composition of natural and semi-natural vegetation in Europe. The value of species based bioindicators such as the Ellenberg N index and measurements of total tissue N and free amino acids in key plant species, is described with reference to a mixed woodland downwind of a livestock farm in the Scottish Borders, operated for over 20 years with a measured spatial gradient of ammonia concentration (29-1.5 microg m(-3)). All the indicators examined showed a relationship with N deposition and provided some indication of vegetation change. Total tissue N and arginine concentrations were most closely linked with ammonia concentrations and N deposition, with r(2) values of >0.97 and >0.78 respectively.  相似文献   

3.
Excess nitrogen deposition: issues for consideration   总被引:11,自引:0,他引:11  
This paper briefly reviews some major mechanisms by which deposition of inorganic N compounds from the atmosphere could be damaging forest and natural ecosystems. Twelve issues which needed further discussion or research were identified. These were: has N deposition increased; what is a N-saturated ecosystem; can the time of onset of N saturation be predicted; can fertiliser experiments simulate the effects of atmospheric deposition; are there relationships between N input and N leaching; is N deposition leading to acidification; does high N input lead to toxicity symptoms in trees; does N input increase tree susceptibility to stress; does N input induce nutrient deficiency; does increasing N affect natural plant communities; what are the effects on aquatic ecosystems; can a 'critical load' for protection of ecosystems be defined? There is a brief critical discussion of each issue. It is concluded that there is not enough understanding of ecosystem function to define a critical load objectively, but that limits can be defined for some ecosystems.  相似文献   

4.
Water soluble organic nitrogen (WSON) compounds are ubiquitous in precipitation and in the planetary boundary layer, and therefore are a potential source of bioavailable reactive nitrogen. This paper examines weekly rain data over a period of 22 months from June 2005 to March 2007 collected in 2 types of rain collector (bulk deposition and “dry + wet” deposition) located in a semi-rural area 15 km southwest of Edinburgh, UK (N55°51′44″, W3°12′19″). Bulk deposition collectors are denoted in this paper as “standard rain gauges”, and they are the design used in the UK national network for monitoring precipitation composition. “Dry + wet” deposition collectors are flushing rain gauges and they are equipped with a rain detector (conductivity array), a spray nozzle, a 2-way valve and two independent bottles to collect funnel washings (dry deposition) and true wet deposition. On average, for the 27 weekly samples with 3 valid replicates for the 2 types of collectors, dissolved organic nitrogen (DON) represented 23% of the total dissolved nitrogen (TDN) in bulk deposition. Dry deposition of particles and gas on the funnel surface, rather than rain, contributed over half of all N-containing species (inorganic and organic). Some discrepancies were found between bulk rain gauges and flushing rain gauges, for deposition of both TDN and DON, suggesting biological conversion and loss of inorganic N in the flushing samplers.  相似文献   

5.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

6.
Ecosystem effects of atmospheric deposition of nitrogen in The Netherlands   总被引:21,自引:0,他引:21  
Atmospheric deposition of inorganic N, mainly ammonium volatilized from manure produced in intensive stockbreeding, on sensitive terrestrial and aquatic ecosystems in The Netherlands is in the order of 40 to 80 kg ha(-1) year(-1). Proven effects of this deposition are (i) eutrophication with N, leading to floristic changes (ii) acidification of base-poor sandy soils and of moorland pools, leading to higher concentrations of dissolved, potentially toxic metals such as Al3+, and (iii) increased levels of nitrate in groundwater below woodlands. In acid forest soils, but not in soils under heathland, nitrification and leaching of nitrate is common. However, in very poor sandy forest soils and at very high ammonium inputs, nitrification may be too slow to prevent the development of high concentrations of ammonium. Both excessive acidification and excessive levels of ammonium probably play an important role in the general forest decline, which is most severe in the southern and central parts of the country, where ammonium inputs are highest.  相似文献   

7.
On an upland moor dominated by pioneer Calluna vulgaris and with an understorey of mosses and lichens, experimental plots were treated with factorial combinations of nitrogen (N) at +0 and +20kg Nha(-1)yr(-1), and phosphorus (P) at +0 and +5kg Pha(-1)yr(-1). Over the 4-year duration of the experiment, the cover of the Calluna canopy increased in density over time as part of normal phenological development. Moss cover increased initially in response to N addition but then remained static; increases in cover in response to P addition became stronger over time, eventually causing reductions in the cover of the dominant Calluna canopy. Lichen cover virtually disappeared within 4 years in plots receiving +20kg Nha(-1)yr(-1) and also in separate plots receiving +10kg Nha(-1)yr(-1), but this effect was reversed by the addition of P.  相似文献   

8.
Matson P  Lohse KA  Hall SJ 《Ambio》2002,31(2):113-119
The sources and distribution of anthropogenic nitrogen (N), including N fertilization and N fixed during fossil-fuel combustion, are rapidly becoming globally distributed. Responses of terrestrial ecosystems to anthropogenic N inputs are likely to vary geographically. In the temperate zone, long-term N inputs can lead to increases in plant growth and also can result in over-enrichment with N, eventually leading to increased losses of N via solution leaching and trace-gas emissions, and in some cases, to changes in species composition and to ecosystem decline. However, not all ecosystems respond to N deposition similarly; their response depends on factors such as successional state, ecosystem type, N demand or retention capacity, land-use history, soils, topography, climate, and the rate, timing, and type of N deposition. We point to some of the conditions under which anthropogenic impacts can be significant, some of the factors that control variations in response, and some areas where uncertainty is large due to limited information.  相似文献   

9.
Increased reactive nitrogen (Nr) deposition due to expansion of agro-industry was investigated considering emission sources, atmospheric transport and chemical reactions. Measurements of the main inorganic nitrogen species (NO2, NH3, HNO3, and aerosol nitrate and ammonium) were made over a period of one year at six sites distributed across an area of ∼130,000 km2 in southeast Brazil. Oxidized species were estimated to account for ∼90% of dry deposited Nr, due to the region’s large emissions of nitrogen oxides from biomass burning and road transport. NO2-N was important closer to urban areas, however overall HNO3-N represented the largest component of dry deposited Nr. A simple mathematical modeling procedure was developed to enable estimates of total Nr dry deposition to be made from knowledge of NO2 concentrations. The technique, whose accuracy here ranged from <1% to 29%, provides a useful new tool for the mapping of reactive nitrogen deposition.  相似文献   

10.
Paerl HW  Steppe TF  Buchan KC  Potts M 《Ambio》2003,32(2):87-90
The Atlantic hurricanes of 1999 caused widespread environmental damage throughout the Caribbean and US mid-Atlantic coastal regions. However, these storms also proved beneficial to certain microbial habitats; specifically, cyanobacteria-dominated mats. Modern mats represent the oldest known biological communities on earth, stromatolites. Contemporary mats are dominant biological communities in the hypersaline Bahamian lakes along the Atlantic hurricane track. We examined the impacts of varying levels of hypersalinity on 2 processes controlling mat growth, photosynthesis and nitrogen fixation, in Salt Pond, San Salvador Island, Bahamas. Hypersalinity (> 5 times seawater salinity) proved highly inhibitory to these processes. Freshwater input from Hurricane Floyd and other large storms alleviated this salt-inhibition. A predicted 10 to 40 year increase in Atlantic hurricane activity accompanied by more frequent "freshening" events will enhance mat productivity, CO2 sequestration and nutrient cycling. Cyanobacterial mats are sensitive short- and long-term indicators of climatic and ecological changes impacting these and other waterstressed environments.  相似文献   

11.
Bimonthly integrated measurements of NO2 and NH3 have been made over one year at distances up to 10 m away from the edges of roads across Scotland, using a stratified sampling scheme in terms of road traffic density and background N deposition. The rate of decrease in gas concentrations away from the edge of the roads was rapid, with concentrations falling by 90% within the first 10 m for NH3 and the first 15 m for NO2. The longer transport distance for NO2 reflects the production of secondary NO2 from reaction of emitted NO and O3. Concentrations above the background, estimated at the edge of the traffic lane, were linearly proportional to traffic density for NH3 (microg NH3 m(-3) = 1 x 10(-4) x numbers of cars per day), reflecting emissions from three-way catalysts. For NO2, where emissions depend strongly on vehicle type and fuel, traffic density was calculated in terms of 'car equivalents'; NO2 concentrations at the edge of the traffic lane were proportional to the number of car equivalents (microg NO2 m(-3) = 1 x 10(-4) x numbers of car equivalents per day). Although absolute concentrations (microg m(-3)) of NH3 were five times smaller than for NO2, the greater deposition velocity for NH3 to vegetation means that approximately equivalent amounts of dry N deposition to road side vegetation from vehicle emissions comes from NH3 and NO2. Depending on traffic density, the additional N deposition attributable to vehicle exhaust gases is between 1 and 15 kg N ha(-1) y(-1) at the edge of the vehicle lane, falling to 0.2-10 kg N ha(-1) y(-1) at 10 m from the edge of the road.  相似文献   

12.
This study was designed to investigate the effect of long-term (11 years) ammonium nitrate additions on standing mass, nutrient content (% and kg ha(-1)), and the proportion of the added N retained within the different compartments of the system. The results showed that more than 90% of all N in the system was found in the soil, particularly in the organic (Oh) horizon. Added N increased the standing mass of vegetation and litter and the N content (kg N ha(-1)) of almost all measured plant, litter and soil compartments. Green tissue P and K content (kg ha(-1)) were increased, and N:P ratios were increased to levels indicative of P limitation. At the lowest treatment, most of the additional N was found in plant/litter compartments, but at higher treatments, there were steep increases in the amount of additional N in the underlying organic and mineral (Eag) horizons. The budget revealed that the proportion of added N found in the system as a whole increased from 60%, 80% and up to 90% in response to the 40, 80 and 120 kg N ha(-1) year(-1) treatments, respectively.  相似文献   

13.
Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha(-1) yr(-1) was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions.  相似文献   

14.
Does nitrogen deposition increase forest production? The role of phosphorus   总被引:2,自引:0,他引:2  
Effects of elevated N deposition on forest aboveground biomass were evaluated using long-term data from N addition experiments and from forest observation plots in Switzerland. N addition experiments with saplings were established both on calcareous and on acidic soils, in 3 plots with Fagus sylvatica and in 4 plots with Picea abies. The treatments were conducted during 15 years and consisted of additions of dry NH4NO3 at rates of 0, 10, 20, 40, 80, and 160 kg N ha−1 yr−1. The same tree species were observed in permanent forest observation plots covering the time span between 1984 and 2007, at modeled N deposition rates of 12-46 kg N ha−1 yr−1. Experimental N addition resulted in either no change or in a decreased shoot growth and in a reduced phosphorus concentration in the foliage in all experimental plots. In the forest, a decrease of foliar P concentration was observed between 1984 and 2007, resulting in insufficient concentrations in 71% and 67% of the Fagus and Picea plots, respectively, and in an increasing N:P ratio in Fagus. Stem increment decreased during the observation period even if corrected for age. Forest observations suggest an increasing P limitation in Swiss forests especially in Fagus which is accompanied by a growth decrease whereas the N addition experiments support the hypothesis that elevated N deposition is an important cause for this development.  相似文献   

15.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

16.
Bulk deposition composition and pine branch washing were measured from April 1999 to March 2000 on the east coast of Spain. The main objective was to characterise N deposition patterns with special emphasis on dry deposition. Bulk deposition in the region is dominated by neutralisation processes by Ca2+ and HCO3-, ClNa of marine origin and a high correlation between NO3- and SO4(2-). SO4(2-) concentrations show a decrease with respect to previous studies in the region in agreement with generalized sulfur emission decreases while the remaining ions, including NO3-, are higher due to their general increase as well as to the inclusion of dry deposition in bulk collectors in the present study. An enrichment in NO3- has been observed in dry deposition composition branch washing) with respect to bulk deposition, while an impoverishment has been observed in the case of NH4+. Annual bulk deposition varies between 7.22-3.1 and 3.5-1.8 Kg ha(-1) year(-1) for S- SO4(2-) and N- NO3-, respectively. N total deposition goes from 9.78 to 6.8 Kg ha(-1) year(-1) at most stations, with the lowest deposition at the control station and Alcoi. The relative dry deposition with respect to the total was over 40% at most stations, going up to 75% at the southern station. N-deposition is expected to be higher considering that N-NH4+ deposition has been underestimated in this study.  相似文献   

17.
18.
Narthecium ossifragum (L.) Hudson was subjected to artificial deposition events in three experiments. In the first, a laboratory experiment, 1.0 m nitrate significantly decreased the growth of Narthecium, and the shoot and root nitrogen content of the plants was increased in all enhanced nitrogen treatments. In the second experiment, solutes were applied in situ to a relatively unpolluted upland ombrotrophic mire at concentrations measured in cloud water at a polluted site in England. There was no effect on Narthecium tissue nitrogen concentration due to either ammonium or nitrate applied alone but the shoot nitrogen was significantly increased when the ammonium and nitrate were applied in combination. In the third experiment, a piece of upland ombrotrophic mire from a relatively unpolluted site in North Wales was transplanted to a polluted site in northern England. After two years both the shoots and roots of Narthecium present in the mire showed a higher nitrogen concentration in the transplant compared with the control. These data show that nitrogen supply in the southern Pennines is supra-optimal for Narthecium, which implies that in such situations it (and other species with a similar ecological strategy) would be out-competed by more vigorous species. The data from the field experiment at the relatively unpolluted site imply that even there, nitrogen supply is close to supra-optimal for Narthecium.  相似文献   

19.
The level of regional air pollution is regularly monitored at three stations in Hungary. The comparison of regional concentrations of SO2 and NO2 to those measured in Budapest shows that urban level concentration of SO2 is ten times higher than the value for background conditions. The corresponding figure for NO2 is five. An increase eastwards across the country can be observed for NO2 and SO2, while particulate sulphate, nitrate and ammonium have practically identical concentrations. The concentration of gaseous ammonia has a summer maximum, while the annual variation of particulate ammonium suggests a winter maximum. The ratio of the level of nitric acid to aerosol nitrate is higher than unity in summer, while in winter it is less than 1. The dry deposition of sulfur and oxidized nitrogen compounds is comparable to their wet deposition. However, in the case of NHx (x = 3 or 4) the wet deposition exceeds the dry deposition by an order of magnitude.  相似文献   

20.
Effects of high ammonia emissions and nitrogen deposition were investigated on lichens around a pig stockfarm (ca. 7,000 animals) in central Italy. Four sites were selected along a transect at 200, 400, 1000 and 2500 m from the stockfarm, the diversity of epiphytic lichens was measured and transplanted thalli of Xanthoria parietina and Flavoparmelia caperata exposed, together with passive NH3 (diffusion tubes) samplers. Ammonia dramatically decreased from the centre of the stockfarm to the sampled sites, where it was correlated with bark pH. Total lichen diversity was not associated with either NH3 concentrations or bark pH, but the diversity of strictly nitrophytic species was highly correlated with both parameters. Physconia grisea was the best indicator species for NH3 pollution. Total N accumulated in X. parietina and F. caperata was correlated with NH3 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号