首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical methods for counting and sizing cloud droplets and a wide range of cloud water sampling methods were used to characterize the atmospheric liquid phase during the FEBUKO cloud experiments. Results near cloud base as well as more than 300 m inside the hill cap clouds are presented, reflecting their inhomogeneous nature. The cloud droplet number varies from 50 to 1000 cm−3 and drop sizes between 1 and 20 μm diameter are most frequent. Variations in the liquid water content (LWC) and in the total ion content (TIC) are much smaller when the measurement position is deeper in the cloud. Near cloud base variability in updraft strength and, near cloud top, entrainment processes (droplet evaporation by mixing with drier air, aerosol and gas scavenging) disturb the adiabatic conditions and produce large variations in LWC and chemical composition. Six different active cloud water collectors and impactors were running side by side; they differ in the principle of sampling, in the throughput of cloudy air per unit time and in the calculated 50% cutoff diameter, which influence also their sampling efficiency. Two of them are designed to collect cloud water in two droplet size fractions. Three cloud events were selected by the FEBUKO team for detailed cloud physical and chemical analyses because they serve best the modelling demands concerning connected flow between the upwind, summit and downwind sites for process studies. Frequency distributions of the LWC and, also of the cloud base height are given as statistical parameters for both FEBUKO experiments.  相似文献   

2.
Cloud and rainwater samples have been collected at a high elevation site in the Vosges Mountains. An automated collection system has been used to collect bulk cloudwater and small cloudwater droplets. Bulk cloudwater concentrations were up to 10 times more concentrated than rainwater concentrations. Small clouddroplets showed generally higher concentrations than bulk cloudwater. Nevertheless, the enrichment factors depend on the compounds under study and appear to be related to the composition of the cloud condensation nuclei forming small or large clouddroplets. Principal component analysis and factor analysis were applied to the collected datasets and confirmed the influence of the cloud condensation nuclei on the composition difference between small and large cloudwater droplets.  相似文献   

3.
4.
Measurements are presented on the scavenging of sulfate and nitrate by cumulus, stratus and strato-cumulus clouds. Assuming that all of the particulate sulfate was in the size range 0.1–1.0 μm radius and that sulfate was scavenged with the same efficiency as sub-micrometer particles in general, the nucleation scavenging coefficient of sulfate in these clouds was deduced to be 0.7 ±0.2 and evidence for sulfate production (1.0±0.3 μgm−3) within cloud water was also obtained. Evidence for nitrate scavenging, by nitrates serving as cloud condensation nuclei or by the absorption of HNO3 by cloud droplets, is also presented. The data suggest that either gaseous nitrogen compounds in the air other than HNO3 can dissolve and contribute to the nitrate concentration in cloud water or that nitrate can be produced within cloud droplets.  相似文献   

5.
Experiments on different annular denuder system (ADS) arrangements for sampling nitrous acid (HNO2) and nitric acid (HNO3) gases were conducted in this study to evaluate their sampling artifacts. The evaluation basis is the one that employed one sodium chloride denuder for sampling HNO3 gas and two sodium carbonate (Na2CO3) denuders for sampling HNO2 gas, which is a commonly employed ADS arrangement in many field applications in the United States. A field study was conducted in Hsinchu, Taiwan, and the results indicated that this ADS arrangement may yield over 80% relative errors for HNO3 gas. It also showed that the relative errors for HNO2 gas can be less than 10% as sampled with only one Na2CO3 denuder. This is attributed to the fact that the ambient HNO3 concentration measured in this study was relatively low while the HNO2 concentration was high, as compared to typical concentrations of these two gases measured in the United States. The sampling error of HNO3 gas may be due to high concentrations of N-containing interfering species present in Taiwan's atmosphere. Because the relative sampling errors of HNO3 and HNO2 gases depend mainly on their concentrations in the atmosphere as well as concentrations caused by interfering species, the risk for high error while measuring low HNO2 concentrations by only one Na2CO3 denuder is also possible. As a result, it is suggested that pretests are necessary to evaluate possible sources and degrees of sampling errors before field sampling of HNO2 and HNO3 gases. The sampling errors of these two gases can, therefore, be minimized with a better arrangement of the ADS.  相似文献   

6.
Shon ZH  Kim KH  Swan H  Lee G  Kim YK 《Chemosphere》2005,58(2):149-161
This study examines the local/regional DMS oxidation chemistry on Jeju Island (33.17 degrees N, 126.10 degrees E) during the Asian dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26, respectively. For comparative purposes, a non-Asian-dust-storm (NADS) period was also considered in this study, which represents the entire measurement periods in April except the ADS events. The atmospheric concentrations of DMS and SO2 were measured at a ground station on Jeju Island, Korea, as part of the ACE-Asia intensive operation. DMS (means of 34-52 pptv) and SO2 (means of 0.96-1.14 ppbv) levels measured during the ADS period were higher than those (mean of 0.45 ppbv) during the NADS period. The enhanced DMS levels during the ADS period were likely due to the increase in DMS flux under reduced oxidant levels (OH and NO3). SO2 levels between the two contrasting periods were affected sensitively by some factors such as air mass origins. The diurnal variation patterns of DMS observed during the two periods were largely different from those seen in the background environment (e.g., the marine boundary layer (MBL)). In contrast to the MBL, the maximum DMS value during the ADS period was seen in the late afternoon at about sunset; this reversed pattern appears to be regulated by certain factors (e.g., enhanced NO3 oxidation). The sea-to-air fluxes of DMS between the ADS and NADS periods were calculated based on the mass-balance photochemical-modeling approach; their results were clearly distinguished with the values of 4.4 and 2.4 micromole m(-2) day(-1), respectively. This study confirmed that the contribution of DMS oxidation to observed SO2 levels on Jeju Island was not significant during our study period regardless of ADS or NADS periods.  相似文献   

7.
Cloud water investigations have been performed at the highest elevation of Central Germany in 1997. Results of extensive trace element measurements are presented. Besides conductivity, pH, liquid water content and major ions the data set includes 49 minor and trace elements. Estimation of crustal enrichment factors (EFs) provides an indication of the anthropogenic contributions to the cloud water concentrations. The variation of cloud composition with time has been illustrated for two selected events with different air mass origins. The chemical composition of the cloud condensation nuclei on which the droplets grow mainly determines the cloud water chemistry. For a cloud event in June 1997 the concentrations of the crustally derived elements Si, Al, Fe, Ti, Ce, La and Nd follow each other closely. The fact that SO42−, NO3 and NH4+ are only moderately correlated with the particular pollutants with high enrichment factors such as Cd, Sb, Pb, Zn, Cu, As, Bi, Sn, Mo, Ni, Tl and V indicates that their source regions are more widespread. During an event in October 1997 the time trends for most minor and trace elements follow rather closely those for the major ions NH4+, SO42− and NO3. Back trajectories show that the transport from continental and marine European sources was the likely cause of the sample concentrations. EFs of trace elements in cloud water samples during the June and October event show a strong correlation with those obtained for urban particulate matter. Although both events are influenced by air masses of different origin, there is a good agreement between the EF signatures.  相似文献   

8.
During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s?1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm?3), corresponding surface area (142 μm2 cm?3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s?1), mean number concentrations were higher (>6000 cm?3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.  相似文献   

9.
It is well documented that atmospheric sulfate particles constitute the major class of cloud condensation nuclei. Under natural conditions, not disturbed by human activities, sulfate particles form from gaseous precursors released by the biosphere. In this way the biosphere plays an important role in the control of the cloud cover and consequently of the albedo of the Earth-atmosphere system. On the other hand, cloud condensation nuclei of biospheric origin make the redistribution of water on the Earth surface possible which is of crucial importance for the existence of living species.  相似文献   

10.
A numerical model to predict the occurrence of visible condensation and cloud length in chimney plumes is tested against observations of the plume from a 500 MW natural gas-fired power station at Melbourne, Australia. The model employs two entrainment parameters selected from the literature on plume trajectories and not fitted to the observations reported here. A criterion for a plume to be visible is developed for droplets around 5 μm radius and plume distribution of condensed water determined from Gaussian two-dimensionalization of temperature and total water. The model correctly discriminates between cloudy and non-cloudy chimney plumes, between occasions of persistent cloud that extends into the far-field and when cloud terminates in the coherent-plume-phase and reliably forecasts cloud length in this latter case. The results emphasize that good meteorological data are required for accurate predictions.  相似文献   

11.
An intensive field study was conducted in Research Triangle Park, North Carolina in the fall of 1986. Ambient concentrations of the following constituents were obtained: nitric acid, nitrous acid, nitrogen dioxide, sulfur dioxide, ammonia, hydrogen ion, and particulate nitrate, sulfate, and ammonium. Results collected using the annular denuder system (ADS) and the transition flow reactor (TFR) are presented and compared.

Both types of samplers had operational detection limits on daily (22-hour) samples that were generally below 1 μg m-3 suggesting that both samplers can provide sensitive measurements for most of the constituents of interest. Both the ADS and TFR show reasonable (>25 percent) within-sampler precision for most of the measured species concentrations, except TFR fine particulate nitrate measurements where results were frequently negative (The TFR fine particulate nitrate measurement is calculated using subtraction of positive numbers).

Comparison of ADS and TFR daily results showed good agreement for total particulate sulfate, the sum of total (coarse plus fine) particulate and gaseous nitrate, and ammonia. As a result of different inlet particle collection efficiencies, the ADS fine particulate sulfate exceeded the TFR (5 percent). In the absence of a filter to collect volatilized particulate ammonium in the ADS, the sum of total particulate and gaseous ammonium in the TFR exceeded that in the ADS. Of potentially more importance, ADS measurements of SO2 and H+ exceeded those of the TFR, while TFR measurements of HNO3 exceeded those of the ADS. Results of this study suggest that the TFR may provide biased measurements of SO2, H+, HNO3, and Fine NO3 - that cannot be corrected without modifications to the fundamental design of the sampling system.  相似文献   

12.
Polar organic chemical integrative samplers (POCIS) were exposed for 9 days in two different microcosms that contained river waters spiked with deethylterbuthylazine, terbuthylazine and isoproturon. The experiment was performed with natural light and strong turbulence (flow velocities of about 15-50cms(-1)) for reproducing natural conditions. The concentrations were kept relatively constant in the first microcosm (2.6-3.6mugl(-1)) and were variable in the second microcosm (peak concentrations ranged from 15 to 24mugl(-1) during the 3 day pulse phase). The time-weighted average (TWA) concentrations were determined with both POCIS and repetitive grab sampling followed by solid-phase extraction. The results showed a systematic and significant overestimation of the TWA concentrations with the POCIS most probably due to the use of sampling rates derived under low flow scenario. The results showed also that peak concentrations of pollutants are fully integrated by this passive sampler. Even if the POCIS should not provide very accurate concentration estimates without the application of adequate sampling rate values or the use of performance reference compounds, it can be a really useful tool for detecting episodic or short-term pollution events (e.g. increased herbicide concentrations during a flood), which may be missed with classical and low frequency grab sampling.  相似文献   

13.
This paper is concerned with sampling submicrometer particles in perisonic flows. The study employed a high volume (30-45 L/min) condensation aerosol generator to produce stearic acid particles having a mean diameter of 0.8μm and a geometric standard deviation of 1.28. The aerosol was diluted with dry air and accelerated to Mach 0.6, 0.8, 1.26, or 1.47 through a flow nozzle. Aerosol mass concentrations were determined using a small bore probe in the jet and by a large bore probe sampling isokinetically upstream of the jet nozzle. The results of both samples were compared to compute the sampling error associated with I ho high spood jot sample. The mass of stearic acid colloctod on polycarbonate mombrono flltors was determined by gravimoirlc and chromalogrophlc mothods. Studies at Mach 0.8 with four sampling probes having Inlet wall to bore area ratios ranging from 3.8 to 0.28 (a knife edge) demonstrated that probe wall thickness effects are not significant when the sample is extracted isokinetically. Subisokinetic experiments using the knife edged probe showed relative errors of 124 ± 12% when sampling at 2 0% of the isokinetic condition. The subisokinetic results are compared favorably with the extended empirical results of other authors. For the supersonic cases it is shown that the subsonic velocity downstream of the sampling probe bow shock can be used in estimating the sampling error.  相似文献   

14.
Since rain systems show a wide variation in structure in both time and space, it is virtually impossible to model in detail the behaviour of sulphur passing through a rain system. Instead, an attempt has been made to determine the scale of the major processes going on in a frontal rain system based on the conservation equations for cloudwater, rainwater, SO2 in air, sulphate in cloud and sulphate in rainwater. When this procedure is followed it is found that cloud and rainwater amounts are determined largely as a dynamic balance between cloudwater condensation and accretion of cloud drops by rain. The removal of SO2 in rain is mainly determined by the oxidation of SO2 in cloud, enhanced by oxidation in rain. In the case when oxidation of SO2 by O3 is the primary oxidation pathway a simple formula is derived for the fractional removal efficiency, which shows which parameters are of greatest importance and has potential use in the current generation of long-range transport models. This formula shows that the removal efficiency is a strongly non-linear function of sulphur dioxide concentration. At regional average SO2 concentrations removal is efficient, but decreases rapidly at higher SO2 concentrations.  相似文献   

15.
Gas–particle interactions of low-molecular-weight dicarboxylic acids were studied at a coastal Arctic site during the summer. Size segregated measurements with a Berner low-pressure impactor displayed up to four modes for ionic compounds: an Aitken mode, an accumulation mode, and two supermicron modes. The lower supermicron mode was ascribed to sea-salt, whereas the upper mode consisted mostly of species associated with continental particles. All four modes could be identified for oxalic acid, with the lower supermicron mode being the dominant. Malonic acid displayed a supermicron mode but was not found in the submicron size range. Succinic acid had an accumulation mode and, in a few samples, a supermicron mode. Glutaric acid displayed sometimes and accumulation mode, sometimes a supermicron mode, and occasionally both. The most probable formation pathway for submicron oxalic and glutaric acid was condensation from the gas phase, even though production in cloud droplets cannot be ruled out either. A slightly different formation pathway may have been important for submicron succinic acid production. Supermicron oxalic acid was probably formed by condensation from the gas-phase, by heterogeneous reactions occurring on the surface of pre-existing sea-salt and continental particles, or in cloud droplets. A larger mass median diameter for supermicron malonic and glutaric acid might be indicative of liquid-phase production in aqueous sea-salt particles. Evidence on possibly substantial sampling artifacts related to measuring dicarboxylic acids using filters were also obtained.  相似文献   

16.
An automated timed exposure diffusive sampler (TEDS) for sampling nitrogen dioxide (NO2) was developed for use in epidemiological studies. The TEDS sequentially exposes four passive sampling devices (PSD) by microprocessor controlled valves while a pump and air flow guide prevent sampler "starvation." Two TEDS units and two portable, real-time NO2 monitors were tested for accuracy, precision, sensitivity, and linearity of response. The accuracy of the TEDS was within 10 percent of the calibrated NO2 values, and precision was within 10 percent of the means of the measured values. The TEDS sensitivity was 20 to 30 ppb-hour for NO2. Co-location of the TEDS with a chemiluminescent NOx monitor (EPA reference method) showed similar responses to ambient NO2 (R2 = 0.9991). TEDS allows better time resolution than traditional diffusive samplers (i.e., Palmes tube) while sharing their ability to sample a variety of gases.  相似文献   

17.
A remote sequential air sampling unit has been developed which is compact, lightweight, and quite inexpensive. The sampling device contains a number of spring-loaded syringes which are released sequentially by the motion of a rotary mechanical timer. Field tests indicate that the sampling device can take accurate sequential air samples automatically and contain each sample without leakage for at least a period of 18 hours in an outdoor environment.  相似文献   

18.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

19.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

20.
Shon ZH  Kim KH  Bower KN  Lee G  Kim J 《Chemosphere》2004,55(8):1127-1142
In this study, we examined the influence of the long-range transport of dust particles and air pollutants on the photochemistry of OH and NO3 on Jeju Island, Korea (33.17 degrees N, 126.10 degrees E) during the Asian-dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26. Average concentration levels of daytime OH and nighttime NO3 on Jeju Island during the ADS period were estimated to be about 1x10(6) and 2x10(8) moleculescm(-3) ( approximately 9 pptv), respectively. OH levels during the ADS period were lower than those during the non-Asian-dust-storm (NADS) period by a factor of 1.5. This was likely to result from higher CO levels and the significant loading of dust particles, reducing the photolysis frequencies of ozone. Decreases in NO3 levels during the ADS period was likely to be determined mainly by the enhancement of the N2O5 heterogeneous reaction on dust aerosol surfaces. Averaged over 24 h, the reaction between HO2 and NO was the most important source of OH during the study period, followed by ozone photolysis, which contributed more than 95% of the total source. The reactions with CO, NO2, and non-methane hydrocarbons (NMHCs) during the study period were major sinks for OH. The reaction of N2O5 on aerosol surfaces was a more important sink for nighttime NO3 during the ADS due to the significant loading of dust particles. The reaction of NO3 with NMHCs and the gas-phase reaction of N2O5 with water vapor were both significant loss mechanisms during the study period, especially during the NADS. However, dry deposition of these oxidized nitrogen species and a heterogeneous reaction of NO3 were of no importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号