首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Prey species may use many different behaviours to avoid predation. In this study, the antipredator behaviours of juvenile roach (Rutilus rutilus) and juvenile perch (Perca fluviatilis) were studied in wading pools with three kinds of structural complexity: no structure, structure simulating vegetation and structure simulating bottom crevices. Predation experiments with piscivorous perch and habitat choice experiments with the prey were performed, and the foraging success and prey choice of the predators were related to the type of structure. Predator foraging success was lower in the vegetation than in the other treatments. In the absence of structure and with vegetation structure, predators preferred perch over roach, while the preference was reversed in the crevice treatment. Roach and perch differed in their antipredatory behaviours. Roach responded to the presence of predators by schooling, moving fast and remaining at the surface, and escaped from attacks by jumping out of the water. In contrast, perch moved more slowly, dispersed after attacks and tried to hide at the bottom. Perch always preferred the vegetation structure to the non-structured part of the pool, while roach showed preference for the vegetation structure only when predators were present. Roach never occurred in crevices, whereas perch used crevices when predators where present. Predator pursuit speed was lower in the vegetation structure than in the non-structured treatment, but prey escape speed was unaffected. The results suggest that both the quantity and quality of structural complexity interacting with species-specific antipredator behaviours are important for predator-prey dynamics. It is also suggested that the presence of structure can have substantial effects on the structure of North Eurasian fish communities, by affecting relative and absolute predation pressures from piscivorous perch on prey species. Correspondence to: B. Christensen  相似文献   

3.
Nestling growth is known as an important determinant of fitness in altricial birds, but its evolutionary potential has been debated, and little is known about detailed patterns of current selection on growth. Relationships are often reported between nestling growth and attributes of nestlings and parents, but the interpretation of these depends on the advantages a given growth difference confers to the chicks. Increased growth may have positive, negative or context-dependent effects on offspring fitness, but these effects are largely unknown in natural populations. We measured growth trajectories of body mass in fostered broods of collared flycatchers (Ficedula albicollis) in 3 years of contrasting food conditions. We examined the growth of young and their recruitment probability to the breeding population in relation to year quality, hatching rank, sex, paternal age and paternal attractiveness. We also looked at the interactive effects of growth and intrinsic offspring attributes on recruitment probability. The predictors of nestling growth and those of recruitment did not agree. Moreover, the recruitment consequences of a given nestling growth rate were significantly influenced by nestling rank and paternal ornamentation. Differential recruitment effects of nestling growth in relation to parental traits and nestling attributes suggest that using growth as a generally applicable measure of nestling quality may not be justified. These findings also have implications for morphological evolution and the indicator value of sexual signals.  相似文献   

4.
Herbaceous plant production plays a key role in determining the function of rangeland ecosystems in the semi-arid and Mediterranean regions. Therefore, assessment of herbaceous plant habitats is important for understanding the ecosystem functioning in these regions and for applied purposes, such as range management and land evaluation. This paper presents a model to assess herbaceous plant habitats in a basaltic stony environment in a Mediterranean region. The model is based on geographic information systems (GIS), remote sensing and fuzzy logic, while four indirect variables, which represent major characteristics of herbaceous habitats, are modeled: rock cover fraction; wetness index (WI); soil depth; and slope orientation (aspect). A linear unmixing model was used to measure rock cover on a per pixel basis using a Landsat TM summer image. The wetness index and local aspect were determined from digital elevation data with 25 m × 25 m pixel resolution, while soil data were gathered in a field survey. The modeling approach adopted here is process-based and assumes that water availability plays a crucial role in determining herbaceous plant production in Mediterranean and semi-arid environments. The model rules are based on fuzzy logic and are written based on the hypothesized water requirements of the herbaceous vegetation. The results show that on a polygon basis there is positive agreement between the model proposed here and previous mapping of the herbaceous habitats carried out in the field using traditional methods. Intrapolygon tests show that the use of a continuous raster data model and fuzzy logic principles provide an added value to traditional mapping. Moreover, herbaceous biomass measurements at two time intervals—mid- and peak winter season—corresponded with the habitat assessment predictions achieved using a new scenario that is proposed in this research. This scenario suggests that rockiness increases herbaceous production on south-facing slopes, while in other slope aspects the rock cover has lower impact on herbaceous growth. Due to its simplicity, the model suggested here can be used by planners and managers, to adjust range activities over large areas. The process-based approach should allow adaptation of the model to other regions more effectively than models that were formulated on a purely empirical basis. The model could also be used to study the relationship between water availability and ecosystem productivity on a regional scale.  相似文献   

5.
The effect of ammonium (5, 10 M N) and phosphate (2, 5, 10 M P) on the growth of the giant clam Tridacna gigas and its symbiotic dinoflagellate Symbiodinium sp. was examined. A 3 mo exposure to these nutritients significantly increased the N or P composition of the soft tissues, as reflected in a corresponding change in C:N:P ratio. Furthermore, exposure to N or N+P markedly increased the amount of soft tissue, but P alone did not, demonstrating that increased availability of inorganic nitrogen enhances tissue growth of the clam host. With addition of N, or N+P, there was a significant increase in the total number of zooxanthellae per clam, with a corresponding decrease in chlorophyll a (chl a) content per zooxanthella. However, only with N+P was there an increase in the zooxanthellae mitotic index. The inverse relationship between zooxanthellae number and chl a per zooxanthella is consistent with phytoplankton studies indicating conditions of nutrient-limitation. Furthermore, the unaffected C:N:P composition of the zooxanthellae and their relatively low specific-growth rates (4 to 10%) also suggest that they are nutrient-limited in vivo. In particular, their high mean C:N:P ratio of 303:52:1 indicates that, relative to C, they are much more depleted in P and less in N than are free-living phytoplankton. Furthermore, polyphosphates (phosphate reserves) were undetectable, and the activity levels of acid phosphatase in the zooxanthellae were relatively high and not influenced by the host's exposure to increased P concentrations in the sea water, implicating the clam host in active regulation of P availability to its symbiotic algae. This is strong evidence that N-limitation of clam zooxanthellae is a function of the availability of ammonium to the symbiosis while, irrespective of nutrient levels in sea water, clam zooxanthellae still show characteristics of P-limitation.  相似文献   

6.
The species richness of sessile organisms on settlement panels on a coral reef was measured by the slope of a regression of loge number of species against loge area of sample. At a well illuminated site where panels were colonised by algae, the species richness of algae was 19% smaller on surfaces grazed by fishes than on protected surfaces. At a second site in a cave, the species richness of animals on grazed surfaces was 20% greater than on protected surfaces. These results are discussed in the light of differences between the sites. The contrasting effects of predation at the two sites are probably the result of more selective predation at the cave site than at the other site.  相似文献   

7.
Differences in the structure of epibenthic invertebrate species assemblages were investigated in two estuarine areas in Apalachee Bay, Florida (USA), and related to the presence or absence of pulp-mill effluents. Invertebrate species associated with sea-grass beds, mud flats, and oyster reefs were included in the analyses. Surprisingly, several commonly used indicators of pollution stress were ineffective in differentiating the study areas, even though there were large differences in abundance and dominance relationships between them, and these differences were clearly related to the presence of the pulp-mill effluents. Recommendations for data analyses in similar types of studies are made, based on the results of this investigation and others in the same study areas.  相似文献   

8.
9.
Host tissues and zooxanthellae of the giant clam Tridacna gigas contained glutamine synthetase, with the highest transferase activities present in the gill, followed by the kidney, mantle, zooxanthellae, foot, heart and adductor muscle, in that order. Synthetase activities of glutamine synthetase in host tissues and zooxanthellae were in a similar order, but the differences were not so marked. Host tissues also contained hexokinase, glucose-6-phosphate dehydrogenase and malate dehydrogenase. Highest hexokinase activities were present in the heart, followed, in order, by the gill, mantle, adductor muscle and foot. Highest glucose-6-phosphate dehydrogenase activities were present in the gill, followed by the mantle, heart, adductor muscle and foot. All tissues assayed contained high malate dehydrogenase activities. There was no detectable glutamate dehydrogenase activity. Glutamine synthetase activity in gill and mantle tissue decreased by 1.6% with every 1 cm increase in clam size. Host glutamine synthetase activity decreased by 80% in gill tissue and by 45% in mantle tissue in clams which were maintained for 8 d in continuous darkness. Similar effects were found when clams were kept in light in the presence of elevated ammonia concentrations. It is suggested that both host and symbionts are nitrogen-deficient in small clams and that host glutamine synthetase plays a role in ammonia assimilation by the intact association.  相似文献   

10.
Russell FL  Louda SM  Rand TA  Kachman SD 《Ecology》2007,88(2):413-423
Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001-2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0-220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (<5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle's co-occurrence with the coevolved preferred exotic host plant and not from the weevil's response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants.  相似文献   

11.
We assessed the utility of separated carotenoid mixtures for sponge systematics. Carotenoids were extracted from 29 species of 22 genera of 6 families for the demosponge order Poecilosclerida. Mixtures were separated (by thinlayer chromatography on silica gel) without chemical modification and after alteration by saponification, reduction or acetylation or a combination thereof. This approach allowed analysis of individual colonies of less than 1 g wet weight. Relationships among taxa were determined through use of Lawson's similarity index and discriminative analysis. Analysis of multiple runs of fractions from one individual of Ophlitaspongia pennata showed the method to be consistent and reliable. Comparison of specimens of species collected at different localities and times showed high correspondence of carotenoid patterns except in those species suspected of representing species complexes. Analysis of members of the family Clathriidae and of relationships within the order Poecilosclerida suggest that fatty acids esterified to carotenoids may be family-specific and of more taxonomic value than carotenoids. The importance of testing for seasonal, geographic and habitat variability in biochemical patterns is stressed. We discuss the significance of these methods to sponge systematics and their use in comparative studies.  相似文献   

12.
Kiers ET  van der Heijden MG 《Ecology》2006,87(7):1627-1636
The 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal fungi (AMF) is one of the most ancient, abundant, and ecologically important mutualisms on Earth. Yet, the evolutionary stability of mycorrhizal associations is still poorly understood, as it follows none of the constraints thought to stabilize cooperation in other well-known mutualisms. The capacity of both host and symbiont to simultaneously interact with several partners introduces a unique dilemma; detecting and punishing those exploiting the mutualism becomes increasingly difficult if these individuals can continue to access resources from alternative sources. Here, we explore four hypotheses to explain evolutionary cooperation in the arbuscular mycorrhizal symbiosis: (1) pseudo-vertical transmission and spatial structuring of plant and fungal populations leading to local adaptation of partners; (2) luxury resource exchange in which plants trade surplus carbon for excess fungal nutrients; (3) partner choice allowing partners to associate with better cooperators; and (4) host and symbiont sanctions which actively reward good partners and punish less cooperative ones. We propose that mycorrhizal cooperation is promoted by an exchange of surplus resources between partners and enforced through sanctions by one or both partners. These mechanisms may allow plant and fungal genotypes to discriminate against individuals employing exploitative strategies, promoting patterns of partner choice. Together these selection pressures provide a framework for understanding the stabilization of mycorrhizal cooperation over evolutionary time.  相似文献   

13.
The hydrozoans Maeotias inexspectata Ostroumoff, 1896 and Blackfordia virginica Mayer, 1910, believed to be native to the Black Sea (i.e. Sarmatic) and resident in a variety of estuarine habitats worldwide, were found as introduced species in the Petaluma River and Napa River, California, in 1992 and 1993. These rivers are mostly-estuarine tributaries that flow into north San Francisco Bay. Both species appeared to be well-established in this brackishwater habitat. Salinities at the collection sites were about 11 during the summer, rising to nearly 20 in the early autumn and falling to near 0 in the winter. Large numbers of all sizes of both species of medusae were observed and collected, indicating that the hydroid stages of the life cycles of the two are also well-established in these rivers. In the Petaluma River, populations of both species were at maximum in late July, with numbers of individuals declining through August and into September; the Napa River was sampled only in October, and at that time only B. virginica was found. Examination of full guts of M. inexspectata and B. virginica medusae revealed that both species had fed nearly exclusively on small crustaceans, principally barnacle nauplii, copepods and their eggs and nauplii, and crab zoea larvae (M. inexspectata only). All the M. inexspectata medusae were males, indicating that the population has probably developed from the introduction of perhaps only a single male polyp or polyp bud. In spite of its inability to reproduce sexually, this population appears to be maintained by the prodigious ability of the polyp to bud and reproduce asexually, and is fully capable of invading additional low-salinity habitats from its present Petaluma River site. Male and female B. virginica medusae were collected in both the Petaluma River and the Napa River, indicating that B. virginica may have been introduced by either the polyp or medusa stage (or both), but that multiple individuals (of both sexes) must have arrived from another port in one or more invasions. As indicated for M. inexspectata, the B. virginica population will also probably seed new populations in San Francisco Bay and elsewhere. Based on its cnidome as well as the morphology of both medusa and polyp, M. inexspectata has been reclassified by moving it from the family Olindiidae, Limnomedusae, to the family Moerisiidae, Anthomedusae.  相似文献   

14.
Shelled molluscs frequently exhibit a record of damage on exterior surfaces that can evidence past predation attempts and may affect survival and growth. In South Carolina populations of the ribbed marsh mussel, Geukensia demissa, >90% of the individuals and up to 60% of the total shell area are damaged. A trend toward greater amounts of damage occurred on mid-marsh compared to oyster reef mussels from the barrier beach side of inlets. Shell damage effects on survivorship and shell and tissue growth were assessed seasonally during multi- and single-season field experiments. Mussels from a common mid-marsh site were divided into size classes (~50 or 70 mm), treated to create two damage levels (undamaged and damaged), and replaced within mid-marsh exclusion cages to minimize additional shell damage. In both multi- and single-season experiments increased shell damage resulted in significantly greater mortality. Linear shell growth was unaffected by increased damage, but 50 mm mussels grew twice as fast. Shell mass increased 16–50% in the multi-season and single-season winter period, but decreased 7–12% during the single-season summer period. Tissue mass significantly decreased 31–43% in 50 mm damaged mussels, but increased by 33% for 70 mm mussels in both multi-season and the single-season winter period experiments. Shell damage did reduce tissue mass 43% in 70 mm single-season summer mussels. Experimental results indicate shell damage from a simulated increase in predation can affect negatively both survival and growth of marsh mussels. Seasonal timing of shell damage and initial mussel size also influenced the effects of sublethal predation on shell and tissue growth. The previously unrecognized importance of sublethal predation and the resultant significant negative effects of shell damage on survival and growth will affect the distribution and population dynamics of G. demissa in coastal marshes and will influence the overall contribution of ribbed mussels to estuarine ecosystems.  相似文献   

15.
Mammalian life histories suggest that maternal body condition and social dominance (a measure of resource-holding potential) influence the physical and social development of offspring, and thereby their reproductive success. Predictably, a mother should produce that sex of offspring which contributes most to her fitness (as measured by the number of her grandchildren) and that she is best able to raise within the constraints imposed by her condition, social rank, and environment. Such combined effects were investigated by monitoring variations in body condition (weight) and behavior of female toque macaques, Macaca sinica of Sri Lanka, in a changing forest environment over 18 years. Maternal rank, by itself, had no influence on offspring sex, but did affect maternal body condition. The combined effects of rank and condition indicated the following: mothers in robust condition bore more sons, whereas those in moderate condition bore more daughters, but both effects were expressed most strongly among mothers of high rank. Where the consequences of low rank were felt most acutely, as shown by poor condition, mothers underproduced daughters. Environmental quality directly influenced rank and condition interactions, and thus sex ratios. These relationships, and data from other mammals suggest an empirically and theoretically consistent pattern of sex allocation in mammals. New predictions integrate effects, proposed by Trivers and Willard, that are rooted in male mate competition, which is universal among polygynous mammals, with those of local resource competition (and/or female reproductive competition), which are not universal and differ in intensity between the socioecologies and local environments of different species. Received: 30 May 1998 / Accepted after revision: 29 August 1998  相似文献   

16.
The sexual and asexual phases of reproductive cycles of two sponges, Tethya citrina and T. aurantium, living sympatrically in a Mediterranean coastal lagoon (Stagnone di Marsala, NW Sicily) were studied from samples collected over an 18-mo period. Both species are oviparous and gonochoric. They have a summer, partially overlapping, period of oocyte production, although T. citrina appear to mature earlier. No males were found, possibly due to the very short period of spermatogenesis. Both species produce asexual buds during the autumn/winter months. However, they seem to follow different reproductive strategies, with T. citrina showing a significantly lower production of buds than T. aurantium; by contrast, egg production is significantly lower in the latter species. The difference in the reproductive resource allocation is consistent with data reported in the literature on the anatomy features, genetic population structure and ecological distribution.  相似文献   

17.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   

18.
Mass release of gametes of the sponge Neofibularia nolitangere (Duch. & Mich., 1864) occurs simultaneosly along the leeward coast of Curaçao over a period of three subsequent days, without any apparent spatial pattern in the sperad of activity. A population of 99 individual sponges was monitored from August through November 1984 for development and subsequent release of gametes. Release started every day of 3 3-d period (12 to 14 October) at about 1400 hrs and lasted until just after sunset (1830 hrs). Ninety percent of the population showed reproductive activity. Exactly one lunar month later (11 to 12 November), a second release of gametes occurred. In the following year the same sequence of events was observed for the original population (2 to 4 October and 1 to 2 November, 1985). In all instances the first gamete release began on the third day after the full moon. These and earlier observations on this phenomenon show a strong correlation between moon phase and the time of gamete release. Histological and field observations show separate development and release of gametes (sex-ratio males: females 1.5:1) with external fertilization. No sex-reversal occurred in the population during release activity the following year, demonstrating a clear gonochoristic and oviparous type of reproduction for N. nolitangere. First development of oocytes and spermatocytes has been observed at 36 and 7 d, respectively, before the date of first release. In both males and females, a major part of the mesohyl of the total sponge was involved in gamete development. Spermatozoa are released through the osculum as a dense white smoke; eggs consisting of oocyte-nurse cell globules, reinforced with spicules, are separately released en masse with the outgoing water stream of the female sponge. Shortly after release the eggs become sticky and show a negative buoyancy. The reproductive strategy of N. nolitangere appears to be directed at maximizing the number of surviving recruits by maintaining a high reproductive output at a short specific time interval.  相似文献   

19.
W. Fitt  C. Cook 《Marine Biology》2001,139(3):507-517
The availability of solid food (Artemia nauplii) and dissolved inorganic nutrients (ammonium, nitrate, phosphate) to the shallow-water marine hydroid Myrionema amboinense was manipulated for 1-8 days in order to investigate their role in the growth of intracellular symbiotic dinoflagellates (zooxanthellae) of the genus Symbiodinium. Symbionts from hydroids collected from the field or maintained under laboratory conditions (25°C, 12 h:12 h light:dark cycle, 80 µE m-2 s-1 fluorescent lighting) always exhibited a single peak in mitotic index (MI) at dawn. Symbionts in freshly collected field animals had an MI peak of about 15%. Symbiotic dinoflagellates in hydroids fed Artemia nauplii twice daily in the laboratory maintained this dawn peak of MI between 10% and 15%, but in the absence of feeding or added inorganic nutrients, this peak declined to less than 1% within 2-4 days. In contrast, when hydroids were placed in solutions containing ammonium (20 µM NH4Cl), nitrate (10 µM NaNO3), and a combination of ammonium and phosphate (2 µM Na2HPO4) immediately after collection, the algal MI remained between 5% and 15% for 4-7 days; the addition of 2 µM phosphate did not increase MI relative to unfed rates. When unfed animals were placed in dissolved nitrogen or fed Artemia, the symbiont MI increased from <1% to 10-17% within 2-3 days; P alone had no effect. However, the increase resulting from added inorganic nutrients was temporary, lasting only 5-7 days. These observations suggest that algal division in the host is maintained indefinitely in the field or by feeding particulate foods twice daily in the laboratory, but the addition of inorganic nutrients alone (ammonium, nitrate and ammonium/phosphate) appeared to support the completion of a maximum of one additional round of cell division. Nutrients required for continued growth and division of symbiotic dinoflagellates are linked to host feeding and host growth; without external food, neither host nor symbiont continue to grow. The same phenomenon is seen in zooxanthellate anemones, clams and corals, where total numbers of symbionts appear to be linked to changes in host-tissue biomass (protein), achieving relatively stable densities in M. amboinense, corals and other cnidarian symbioses, depending on their local environmental conditions. The results of the present study help explain the cellular responses of algal symbionts in reef-dwelling invertebrates to additions of dissolved inorganic nutrients to coral-reef ecosystems.  相似文献   

20.
The sponge sub-class Homoscleromorpha is generally considered to include just two families, the Oscarellidae (without spicules) and the Plakinidae (with simple spicules). In May 1990, an unusual sponge was found deep inside a submarine cave in the western Mediterranean Sea. On the basis of externally visible characters this sponge appeared indistinguishable from the common plakinid species Corticium candelabrum Schmidt, 1862. However, on closer examination in the laboratory the new sponge proved to be devoid of spicules. Therefore, despite great morphological similarities to C. candelabrum, the new sponge should, by taxonomic convention, have been placed in the Oscarellidae. On the basis of other criteria, the similarities to C. candelabrum were great and the new sponge was at first considered to be conspecific. Thus, the taxonomic position of the new sponge and its relationship to C. candelabrum are highly confusing. It could be an aspiculate morph of C. candelabrum, or a new and undescribed related species or, lacking spicules, it could justifiably be placed in a different family (Oscarellidae). The relationship of the new sponge to C. candelabrum and also to two species of Oscarella (Oscarellidae) was assessed by the use of enzyme electrophoresis to estimate genetic divergence between species. It was found that the new sponge was reproductively isolated from sympatric C. candelabrum, with 6 of 16 loci proving diagnostic. Thus it is clear that the new sponge belongs to a different biological species. Surprisingly it was also found that, although this new species was fairly closely related to C. candelabrum (level of genetic identity, I0.47), the two Oscarella species were similarly closely related to C. candelabrum (I0.31 to 0.41) and rather less closely to the new species (I0.17 to 0.28). Indeed from genetic identity estimates, O. tuberculata is more closely related to C. candelabrum than it is to O. lobularis. It is concluded that all homoscleromorph sponges should be placed in the single family Plakinidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号