首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
Fresh water, a fundamental element of all estuarine ecosystems, is South Africa’s most limited natural resource. Recent projections indicate that by the year 2020 the country will be utilizing all its exploitable freshwater sources. Steeply increasing demands by a rapidly growing population on this limited commodity have already resulted in a severe reduction of water supplies to natural users such as estuaries — this trend is predicted to increase in the future. Concurrent with excessive water abstraction, poor land husbandry (e.g. soil erosion) in many catchment basins and pollution (e.g. salinization) in return flows have led to a serious deterioration in water quality. In contrast, a review of estuarine responses to varying flow regimes stresses the strong dependence of local systems on riverine fresh water inputs of adequate quantity and quality. Freshwater dependence is i.a. expressed in: flooding events that scour accumulated sediments, riverine nutrient input to drive estuarine phyto- and zooplankton production, axial salinity gradients that increase habitat and species diversity, and maintenance of open tidal inlets that prevent salinity and temperature extremes and facilitate larval exchange, fish migrations and tidal flushing of salt marshes. Thus, estuarine conservation will have to encompass management of rivers and watersheds and play an increasingly political role in decision processes concerning water allocations among ‘human’ and ‘natural’ users.  相似文献   

2.
Rarefaction estimates how many species are expected in a random sample of individuals from a larger collection and allows meaningful comparisons among collections of different sizes. It assumes random spatial dispersion. However, two common dispersion patterns, within-species clumping and segregation among species, can cause rarefaction to overestimate the species richness of a smaller continuous area. We use field studies and computer simulations to determine (1) how robust rarefaction is to nonrandom spatial dispersion and (2) whether simple measures of spatial autocorrelation can predict the bias in rarefaction estimates. Rarefaction does not estimate species richness accurately for many communities, especially at small sample sizes. Measures of spatial autocorrelation of the more abundant species do not reliably predict amount of bias. Survey sites should be standardized to equal-sized areas before sampling. When sites are of equal area but differ in number of individuals sampled, rarefaction can standardize collections. When communities are sampled from different-sized areas, the mean and confidence intervals of species accumulation curves allow more meaningful comparisons among sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Daniel SimberloffEmail:
  相似文献   

3.
An important decision in presence-only species distribution modeling is how to select background (or pseudo-absence) localities for model parameterization. The selection of such localities may influence model parameterization and thus, can influence the appropriateness and accuracy of the model prediction when extrapolating the species distribution across time and space. We used 12 species from the Australian Wet Tropics (AWT) to evaluate the relationship between the geographic extent from which pseudo-absences are taken and model performance, and shape and importance of predictor variables using the MAXENT modeling method. Model performance is lower when pseudo-absence points are taken from either a restricted or broad region with respect to species occurrence data than from an intermediate region. Furthermore, variable importance (i.e., contribution to the model) changed such that, models became increasingly simplified, dominated by just two variables, as the area from which pseudo-absence points were drawn increased. Our results suggest that it is important to consider the spatial extent from which pseudo-absence data are taken. We suggest species distribution modeling exercises should begin with exploratory analyses evaluating what extent might provide both the most accurate results and biologically meaningful fit between species occurrence and predictor variables. This is especially important when modeling across space or time—a growing application for species distributional modeling.  相似文献   

4.
The relative abundance of organisms from different taxa provides information about ecosystem health and diversity. When the numbers of sampled organisms are modelled as Poisson counts, and the sample volumes are not uniform, variance for the proportion attributable to each taxon is difficult to compute. We present a method for computing approximate variances for this situation. The point estimates and their standard errors reduce to the standard multinomial maximum likelihood results when sample volumes are uniform. Further, given initial estimates of population densities for the taxa of interest, optimal sample volumes can be computed. The methods are illustrated for zooplankton counts from Andrus Lake, Michigan.  相似文献   

5.
The zonation of the vegetation along the saline and freshwater marshes of the Damietta estuary of the Nile River was studied from near the river mouth to 20 km upstream. Downstream, the estuarine water is almost stagnant and highly saline with high concentrations of nutrients. This makes the habitat unsuitable for euhydrophytes. Upstream, the vegetation consists mostly of freshwater macrophytes. 75 sampling plots were established in representative stands of the upshore and upstream vegetation zones. Classification and ordination of the data revealed seven vegetation types, indicated A—G. The dominant species of the saline marshes werePhragmites australis, Tamarix nilotica andArthrocnemum macrostachyum (A),Zygophyllum aegyptium andPolygonum equisetiforme (B),Cynodon dactylon andSuaeda vera (C). In the freshwater marshes the dominants were:Ludwigia stolonifera, Persicaria lapathifolia (D),Typha domingensis (E),Eichhornia crassipes (F) andCeratophyllum demersum (G). The first axis of the ordination axis obtained with Detrended Correspondence Analysis can be associated with the upstream gradient. It separates the salt marsh vegetation groups from those of the freshwater marshes. Plant species richness increased upshore along both saline and freshwater marshes. The concentration of dominance increased upstream. Some aspects of proper management of estuarine vegetation are mentioned.  相似文献   

6.
It is becoming increasingly popular to consider species interactions when managing ecological foodwebs. Such an approach is useful in determining how management can affect multiple species, with either beneficial or detrimental consequences. Identifying such actions is particularly valuable in the context of conservation decision making as funding is severely limited. This paper outlines a new approach that simplifies the resource allocation problem in a two species system for a range of species interactions: independent, mutualism, predator-prey, and competitive exclusion. We assume that both species are endangered and we do not account for decisions over time. We find that optimal funding allocation is to the conservation of the species with the highest marginal gain in expected probability of survival and that, across all except mutualist interaction types, optimal conservation funding allocation differs between species. Loss in efficiency from ignoring species interactions was most severe in predator-prey systems. The funding problem we address, where an ecosystem includes multiple threatened species, will only become more commonplace as increasing numbers of species worldwide become threatened.  相似文献   

7.
In order to explore the characteristics and species diversity of the vegetation growing in the provenance slope with high-frequency debris flow, we selected the slopes on the north and south sides of the valley in the Jiangjiagou watershed as the research object. The structural characteristics and quantitative compositions of the communities of vegetation growing on different positions of the slopes were investigated. The species composition, important value, species diversity, and ground and underground biomass of the different communities on the slope were statistically analyzed, and the correlations of the ground and underground biomass with the diversity were determined. The results showed that: of the total 49 species found, the herbs were the dominant flora, of which 33 were found on the northern slope and 23 were found on the southern slope. There were significant differences in the species composition and composition of the important values along the different positions on the slope, being mainly affected by the pioneer herbaceous plants. We found that Heteropogon contortus, Eulaliopsis binata, Arthraxon hispidus, and Sesbania cannabina were highly adaptable to debris flow. These four species are common to the area and can be used as the main configuration species for future ecological restoration. There were differences in the community characteristics and species diversity at different positions on the slope. For the southern slope of the valley, the Shannon-Wiener diversity index was in the order: stable zone (2.311) > instable zone (2.161) > deposit zone (2.036), and in the order: deposit zone (2.626) > stable zone (1.338) > instable zone (1.057) for the northern slope. There were significant differences in the biomass, being in the order: stable zone > instable zone > deposit zone, with higher values in the northern slope than in the southern slope. Based on the aforementioned results, we suggest that the restoration of vegetation in the area of the provenance slope having high-frequency debris flow should focus on the prevention and protection of the instable zone of the slope by natural processes of recovery. The deposit zone needs rational remediation measures. We should introduce local shrub and arbor to increase the species composition and promote the development of plant communities with vertical structures. © 2018 Science Press. All rights reserved.  相似文献   

8.
The characteristics of species diversity in Cupressus funebris secondary forest under the effect of geological hazard were explored by selecting the typical landslide surface of Fenghuang Mountain, Leigu Town, Beichuan County, which was derived from the 5.12 Wenchuan earthquake. The results showed that 93 species belonged to 42 families, and 78 genera were found in the landslide area, where the main families were Compositae, Leguminosae, and Gramineae-based. Further, 97 species in the transition area belonged to 39 families and 80 genera, and the main families were Compositae, Gramineae, and Rosaceae-based. In all, 108 species were recorded in the non-landslide area, which belonged to 59 families and 92 genera, the main families of which were Compositae, Rosaceae, and Gramineae-based. Compositae and Gramineae played important roles in the landslide recovery process after earthquake. The Pielou index (JSW) was the highest in the non-landslide area of the herb layer, whereas the richness index (D) was the lowest; the Shannon-Wiener index (H) and Simpson index (H') showed medium values. In the non-landslide area, the D, H, and H' were the highest in the shrub layer, whereas the JSW was the lowest. Further, the species diversity index of the transitional area was higher than that of the landslide area. In the tree layer, the D and H were both the highest and lowest in the landslide area and transition area, respectively. In contrast, the H' and JSW were the highest in the transition area and the lowest in the non-landslide area. The distribution of vegetation was generally consistent with the distribution of soil nutrients in the spatial distribution of surface soil nutrients. The succession of trees in the landslide area was relatively slow and at the initial stage, and the pioneer species were Coriaria nepalensis, Leptopus chinensis, and Arthraxon lanceolatus in this area. Taken together, the findings suggested that the stability of a plant community can be increased by improving the soil and stabilizing the slope. © 2018 Science Press. All rights reserved.  相似文献   

9.
Customary medicinal plant species used by Australian Aborigines are disappearing rapidly with its associated knowledge, due to the loss of habitats. Conservation and protection of these species is important as they represent sources of novel therapeutic phytochemical compounds and are culturally valuable. Information on the spatial distribution and use of customary medicinal plants is often inadequate and fragmented, posing limitations on the identification and conservation of species-rich areas and culturally valuable habitats.In this study, the habitat suitability modeling program, MaxEnt, was used to predict the potential ecological niches of 431 customary medicinal plant species, based on bioclimatic variables. Specimen locality records were obtained from the Global Biodiversity Information Facility (GBIF) data portal and from Australia's Virtual Herbarium (AVH).Ecological niche models of 414 predicted species, which had 30 or more occurrence points, were used to produce maps indicating areas that were ecologically suitable for multiple species (concordance of high predicted ecological suitability) and having cultural values. For the concordance map, individual species niche models were thresholded and summed. To derive a map of culturally valuable areas, customary medicinal uses from Customary Medicinal Knowledgebase (CMKb) (www.biolinfo.org/cmkb) were used to weight individual species models, resulting in a value within each grid cell reflecting its cultural worth.Even though the available information is scarce and fragmented, our approach provides an opportunity to infer areas predicted to be suitable for multiple species (i.e. concordance hotspots) and to estimate the cultural value of a particular geographical area. Our results also indicate that to conserve bio-cultural diversity, comprehensive information and active participation of Aboriginal communities is indispensable.  相似文献   

10.
喀斯特地区白三叶形态和遗传多样性研究   总被引:1,自引:0,他引:1  
李莉  王元素  洪绂曾 《生态环境》2010,19(7):1532-1536
白三叶(Trifolium repens)的形态学特征随利用年限的增加而进化,单株叶数、生长点数、中叶长、中叶长宽比以及种群内个体之间变异性随着年限的增加而增加,而叶层高度、中叶宽则下降。三个不同年龄草地的平均单株叶质量、根质量、地上生物量、地上生物量与地下生物量的比值等指标数值接近,差异不显著。但是,与茎有关的指标如茎质量等差异显著,匍匐茎生物量随年限的增加而增加,以回避动物采食等干扰,并有利于占据动态空斑而增加种群的持久性。100年白三叶的等位基因数没有20年的高,意味着年限越长的种群以少数大克隆体占优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号