首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liou RM  Huang SN  Lin CW 《Chemosphere》2003,50(2):237-246
Flooded rice fields are one of the major biogenic methane sources. In this study, methane emission rates were measured after transplanting in paddy fields with application of two kinds of nitrogen fertilizers (ammonium sulfate, NH4+-N and potassium nitrate, NO3(-)-N) and with two kinds of rice varieties (Japonica and Indica). The experiment was conducted in fields located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08"N, 120 degrees 16'26"E) of southern Taiwan throughout the first and the second crop seasons in 1999. The seasonal methane flux in the first crop season with NH4+-N and NO3(-)-N ranged from 2.48 to 2.78 and from 8.65 to 9.22 g CH4 m(-2); and the values ranged 24.6-34.2 and 36.4-52.6 g CH4 m(-2) in the second crop season, respectively. In the first crop season, there were significantly increased 3.1-3.7-fold in methane emission fluxes due to plantation of Indica rice. In comparison of two rice varieties, the Indica rice variety showed a tendency for larger methane emission than the Japonica rice variety in the second crop season. Moreover, ammonium sulfate treatment significantly reduced CH4 emissions by 37-85% emissions compared to potassium nitrate plots. It was concluded that the CH4 emission was markedly dependent on the type of nitrogen fertilizer and rice variety in Taiwan paddy soils.  相似文献   

2.
Methane oxidation fluxes were monitored with the closed chamber method in eight treatment plots on a semi-wet grassland site near Giessen, Germany. The management regimes differed in the amount of nitrogen (NH4NO3) fertilizer applied and in the height of the in-ground water table. No inhibition of CH4 oxidation occurred, regardless of the amount of annual N fertilizer applied. Instead, the mean CH4 consumption rates were correlated with the mean soil moisture of the plots. However, the correlation between daily soil water content and corresponding CH4 oxidation rate was always weak. During drought period (late summer) water stress was observed to restrict CH4 oxidation rates. The findings led to the question whether methane production with soil depth might modify the CH4 fluxes measured at the surface. Therefore, two new methods were applied: (1) soil air sampling with silicone probes; and (2) anaerobic incubations of soil cores to test for the methane production potential of the grassland soil. The probe measurements revealed that the CH4 sink capacity of a specific site was related to the vertical length of its CH4 oxidizing column, i.e. the depth of the CH4 producing horizon. Anaerobically incubated soil cores produced large amounts of CH4 comparable with tropical rice paddy soil. Under field conditions, heavy autumnal rain in 1998 led to a dramatic increase of soil CH4 concentrations upto 51 microliters l-1 at a depth of 5 cm. Nevertheless, no CH4 was released when soil surface CH4 fluxes were measured simultaneously. The results thus demonstrate the high CH4 oxidation potential of the thin aerobic topsoil horizon in a non-aquatic ecosystem.  相似文献   

3.
Ding W  Cai Z  Tsuruta H  Li X 《Chemosphere》2003,51(3):167-173
To understand the mechanism for spatial variation of CH(4) emissions from marshes grown with different type of plants in a region and plots within a certain marsh grown with one type of plants, we measured CH(4) emissions from a region in which eutrophic freshwater marshes were divided into three types: Carex lasiocarpa, Carex meyeruana and Deyeuxia angustifolia according to plant type as well as CH(4) concentration in porewater, aboveground plant biomass and stem density in situ in Sanjiang Plain of Northeast China in August 2001. Spatial variation of CH(4) emissions from both different marshes in a region and different plots within a certain marsh was high. The flux rates of CH(4) emissions from three marshes ranged from 17.2 to 66.5 mg CH(4) m(-2)h(-1) with 34.76% of variation coefficient, whereas the values in Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia marshes varied from 21.6 to 66.5 (39.61%), from 17.2 to 45.0 (29.26%) and from 19.1 to 33.0 mg CH(4) m(-2)h(-1) (17.51%), respectively. Both the flux rates and spatial variation of CH(4) emissions strongly increased as standing water depth increased significantly. Standing water depth greatly governed the spatial variation of CH(4) emissions from different marshes in a region by changing the amount of plant litters inundated in standing water, which provided labile organic C for methanogens and controlled CH(4) concentrations in porewater. Moreover, the aboveground plant biomass determined spatial variation of CH(4) emissions from plots within a certain marsh by controlling the pathways (stem density) of CH(4) emissions from the marsh into the atmosphere.  相似文献   

4.
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10, 20, 30, 60, 90 mg of As kg(-1) soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added, was 6.44+/-0.24 mg kg(-1). Both chlorophyll-a and -b contents in rice leaf decreased significantly (p<0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg(-1). The highest chlorophyll-a and -b contents were observed in control treatment (2.62+/-0.24 and 2.07+/-0.14 mg g(-1) were the average values of chlorophyll-a and -b, respectively of the five rice varieties) while 1.50+/-0.20 and 1.04+/-0.08 mg g(-1) (average of five rice varieties) of chlorophyll-a and -b, respectively were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p>0.05) from each other in control treatment though they differed significantly (p<0.05) from each other in 30 mg of As kg(-1) soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.  相似文献   

5.
垃圾填埋场甲烷氧化菌及甲烷通量的研究   总被引:1,自引:0,他引:1  
采用静态箱法、滚管计数法和气相色谱法,对6个不同封场时间填埋区的甲烷通量、覆土层甲烷氧化菌数量和甲烷氧化速率的变化趋势进行了测定,并分析了它们与封场时间、植被覆盖率等因素之间的相关性。结果发现6个填埋区甲烷通量的变化范围在-0.34~5.31 mg/(m2.h)之间;覆土层甲烷氧化菌的数量范围为3.10×107~20.77×107 cfu/g干土,甲烷氧化速率在1.65×10-8~4.34×10-8mol/(h.g)之间。覆土层甲烷氧化菌的数量与甲烷氧化速率呈正相关,但前者并不是后者的决定性因素;甲烷通量高时可刺激甲烷氧化菌数量及氧化速率的提高,且三者均与封场时间呈显著负相关,与植被覆盖率呈负相关;当含水率大于15%时,随着覆土层含水率的增加,甲烷氧化速率呈下降趋势;覆土pH、有机质和铵态氮与甲烷氧化速率等无明显相关性。提高覆土层的甲烷氧化速率可有效减少垃圾填埋场的甲烷排放。  相似文献   

6.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.  相似文献   

7.
Geologic emissions of methane to the atmosphere   总被引:6,自引:0,他引:6  
Etiope G  Klusman RW 《Chemosphere》2002,49(8):777-789
The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.  相似文献   

8.
A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.  相似文献   

9.
Effects of copper concentration on methane emission from rice soils   总被引:1,自引:0,他引:1  
Jiao Y  Huang Y  Zong L  Zheng X  Sass RL 《Chemosphere》2005,58(2):185-193
Outdoor pot experiments with various paddy soils representing five soil types were conducted at Nanjing Agricultural University during the 2000 and 2001 rice-growing seasons. Eighteen soils and ten out of the eighteen soils were involved in the 2000 and the 2001 experiment, respectively. Two treatments were designed as mineral fertilization (MF) and mineral fertilizer + wheat straw incorporation (MF + WS) for the 2001 experiment. Seasonal average rate of CH4 emission from different soils ranged from 1.96 to 11.06 mg m(-2) h(-1) in the 2000 experiment, and from 0.89 to 5.92 mg m(-2) h(-1) for the MF treatment in the 2001 experiment, respectively. Incorporation of wheat straw enhanced considerably CH4 emission with an average increment of 7.09 mg m(-2) h(-1). CH4 emissions from the two-year experiment were negatively correlated to soil available and total copper concentration. A further investigation showed that CH4 emission from the MF treatment was positively related to the dissolved organic carbon (DOC) in the soil (r = 0.904, p < 0.001), and that the DOC was negatively correlated to the concentrations of available copper (r = -0.844, p < 0.01) and total copper (r = -0.833, p < 0.01), respectively. Nevertheless, the incorporation of wheat straw did not enhance the soil DOC, and the relationship between CH4 emission and soil DOC was not statistically significant (r = 0.470, p < 0.20). It was concluded that higher concentration of copper in the soils resulted in lower soil DOC and thus reduced CH4 emission when there was no additional organic matter input. Incorporation of wheat straw did not affect soil DOC and available copper concentration but enhanced CH4 emission.  相似文献   

10.
Castaldi S  Tedesco D 《Chemosphere》2005,58(2):131-139
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.  相似文献   

11.
Effect of bound residues of metsulfuron-methyl in soil on rice growth   总被引:3,自引:0,他引:3  
Li ZJ  Xu JM  Muhammad A  Ma GR 《Chemosphere》2005,58(9):1177-1183
A pot experiment was conducted to appraise the hazards of bound residues of metsulfuron-methyl in soil at six levels (0, 0.050, 0.089, 0.158, 0.281, and 0.500 mg kg(-1)) to the growth of four rice varieties (Xiushui 63, Eryou 810, Liangyoupeijiu, and Zhenong 952). The morphological characteristics of rice roots like root number, total length, surface area of rice roots, and rice biomass were determined. The results showed that the bound residues of metsulfuron-methyl in soil impacted the growth of rice. Root number, total length of roots, surface area of roots, and biomass were restrained by bound residues of metsulfuron-methyl in soil. The inhibition rate of root growth increased from 69.46-81.32% to 85.18-95.97% with the increasing of levels of bound residues of metsulfuron-methyl from 0.05 mg kg(-1) to 0.50 mg kg(-1). The number of rice roots could be taken as a sensitive index to screen the rice varieties endurable to bound residues of metsulfuron-methyl in soil and to predict the potential hazards of bound residues of metsulfuron-methyl in soil to rice. The level of bound residues of metsulfuron-methyl in soil causing the root numbers decreased by 50% (IC50) followed the order of Xiushui 63 < Eryou 810 < Liangyoupeijiu < Zhenong 952.  相似文献   

12.
Flooded rice fields are one of the major biogenic methane sources. In this study, the effects of straw residual treatments on methane emission from paddy fields were discussed. The experimental field was located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08'N, 120degrees16'26'E) of southern Taiwan throughout the first and the second crop seasons in 2000. The seasonal methane fluxes in the first crop season with rice stubble removed, rice straw burned and rice straw incorporated were 4.41, 3.78 and 5.27 g CH4 m(-2), and the values were 32.8, 38.9 and 75.1 g CH4 m(-2) in the second crop season, respectively. In comparison of three management methods of rice straw residue, the incorporation of rice straw residue should show a significant tendency for enhancing methane emission in the second crop season. Moreover, stubble removed and straw burned treatments significantly reduced CH4 emissions by 28 approximately 56% emissions compared to straw incorporated plot. Concerning for air quality had led to legislation restricting rice straw burning, removing of rice stubble might be an appropriate methane mitigation strategy in Taiwan paddy soils.  相似文献   

13.
In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.  相似文献   

14.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using US. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/ day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.  相似文献   

15.
Methane and carbon dioxide emissions from closed landfill in Taiwan   总被引:1,自引:0,他引:1  
Chen IC  Hegde U  Chang CH  Yang SS 《Chemosphere》2008,70(8):1484-1491
The atmospheric concentrations and emission rates of CH(4) and CO(2) were studied at three sites of the Fu-Der-Kan closed landfill and after as the multi-use recreational park in northern Taiwan. Atmospheric CH(4) and CO(2) concentrations of closed landfill were 1.7-4.6 and 324-409ppm, respectively. CH(4) and CO(2) emission rates ranged from 8.8 to 163mg m(-2)h(-1) and from 495 to 1531mg m(-2)h(-1), respectively. Diurnal variation was noted with higher values at night than those in daytime. After creation of the park, atmospheric CH(4) and CO(2) concentrations were 1.8-3.1 and 332-441ppm, respectively. CH(4) and CO(2) emission rates ranged from -1.1 to 2.3mg m(-2)h(-1) and from -135 to 301mg m(-2)h(-1), respectively. There were no notable diurnal variations in either atmospheric concentrations or emission rates.  相似文献   

16.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

17.
Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.  相似文献   

18.
Gogoi N  Baruah KK  Gogoi B  Gupta PK 《Chemosphere》2005,59(11):1677-1684
Methane flux from rice varieties grown under two identical soils of Assam were monitored. In the first experiment, variety Jaya and GRT was grown in sandy loam soil of Lower Brahmaputra Valley Zone of Assam and the second experiment was conducted with variety Jyotiprasad and Bishnuprasad in sandy to sandy loam soils of Upper Brahmaputra Valley Zones of Assam. Methane flux recorded from variety Jyotiprasad and GRT was higher compared to variety Bishnuprasad and Jaya. The seasonal integrated flux recorded was 10.76 g m−2, 9.98 g m−2, 9.74 g m−2 and 11.31 g m−2 for variety GRT, Jaya, Bishnuprasad and Jyotiprasad, respectively. All the varieties exhibited two methane peaks one at maximum tillering stage and other at panicle initiation stage of the crop. Crop growth parameters such as leaf number, number of tillers and leaf area index (LAI) showed strong positive relationship with total methane flux. In both the experiments it was calculated that CH4 emission was substantially influenced by crop phenology and growth. This study emphasise the relationship of different growth parameters with methane emission.  相似文献   

19.

Purpose

We used a sequential extraction to investigate the effects of compost amendment on Cd fractionation in soil during different incubation periods in order to assess Cd stabilization in soil over time.

Methods

Pot experiments using rice plants growing on Cd-spiked soils were carried out to evaluate the influence of compost amendment on plant growth and Cd accumulation by rice. Two agricultural soils (Pinchen and Lukang) of Taiwan were used for the experiments. The relationship between the redistribution of Cd fractions and the reduction of plant Cd concentration due to compost amendment was then investigated.

Results and discussion

Compost amendment in Pinchen soil (lower pH) could transform exchangeable Cd into the Fe- and Mn-oxide-bound forms. With increasing incubation time, exchangeable Cd tended to transform into carbonate- and Fe- and Mn-oxide-bound fractions. In Lukang soil (higher pH), carbonate- and Fe- and Mn-oxide-bonded Cd were the main fractions. Exchangeable Cd was low. Compost amendment transformed the carbonate-bound form into the Fe and Mn oxide form. Pot experiments of rice plants showed that compost amendment enhanced plant growth more in Pinchen soil than in Lukang soil. Compost amendment could significantly reduce Cd accumulation in rice roots in both Pinchen and Lukang soils and restrict internal transport of Cd from the roots to the shoots. Because exchangeable Cd can be transformed into the stronger bonded fractions quickly in Pinchen soil, a reduction of Cd accumulation in rice due to compost amendment of Pinchen soil was significant by 45?days of growth. However, carbonate-bonded fractions in Lukang soil may provide a source of available Cd to rice plants, and exchangeable and carbonate-bonded fractions are transformed into the other fractions slowly. Thus, reduction of Cd accumulation by rice due to compost amendment in Lukang soil was significant by 75?days of growth.

Conclusions

The results of the study suggest that the effectiveness of compost amendment used for stabilization of Cd and to decrease the phytoavailability of Cd for rice plants is different in acidic and alkaline soils. In acidic soil, Cd fractionation redistributes quickly after compost amendment and shows a significant reduction of Cd accumulation by the plant within a few weeks. In alkaline soil, due to the strongly bound fractions of Cd being in greater quantity than the weakly bound ones, a longer period (a few months) to redistribute Cd fractions is needed.  相似文献   

20.
Park S  Lee I  Cho C  Sung K 《Chemosphere》2008,70(6):1117-1123
Landfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated. For this purpose, column and batch tests were conducted using three different materials: typical landfill cover soil, landfill cover soil amended with earthworm cast, and landfill cover soil amended with PAC. The maximum CH4 removal rate of the columns filled with landfill cover soil amended with earthworm cast was 14.6mol m(-2)d(-1), whereas that of the columns filled with typical landfill cover soil was 7.4mol m(-2)d(-1). This result shows that amendment with earthworm cast could stimulate the CH4-oxidizing capacity of landfill cover soil. The CH4 removal rate of the columns filled with landfill cover soil amended with PAC also showed the same removal rate, but the vertical profile of gas concentrations in the columns and the methanotrophic population measured in the microbial assay suggested that the decrease of CH4 concentration in the columns is mainly due to sorption. Based on the results from this study, amendment of landfill cover soil with earthworm cast and PAC could improve its CH4 removal capacity and thus achieve a major reduction in atmospheric CH4 emission as compared with the same landfill cover soil without any amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号