首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用穿透渗漏和常见的环绕流动渗漏(动态渗漏)实验方法,研究和比较了经水泥固化的稳定化/固化有毒有害废物的渗漏行为,所用的合成重废物样吕由Pb^2+、Zn^2+、Cu^2+、Ni^2+和Cr(VI)等5种重金属组成,结果表明,在同种渗漏方式中,重金属的渗漏行为不同。发生穿透渗漏时,重金属的渗漏速率较环绕流动渗漏时高。由于穿透渗漏加束渗漏过程,因此用它研究废物渗漏行为可节省实验时间。  相似文献   

2.
SGA对垃圾焚烧飞灰中重金属的固化性能研究   总被引:1,自引:0,他引:1  
根据EPA1311、HJ/T299—2007、HJ/T300—2007和HJ557—2009等国内外不同标准,研究了深圳某垃圾焚烧发电厂垃圾焚烧飞灰的浸出毒性,探讨了六硫代胍基甲酸(sixthioguanidineacid,SGA)、二甲基二硫代氨基甲酸盐(sodiumdimethyldithiocarbamate,SDD)和Ca(OH)2浓度对垃圾焚烧飞灰中重金属的固定性能的影响。研究结果表明,随着浸提液pH的降低,该厂焚烧飞灰中大部分金属元素的浸出量增大,焚烧飞灰浸出液中的cd、Ni、Ph和zn浓度分别超过国家危险废物鉴别标准(GB5085.3—2007)规定值的4.75倍、1.47倍、6.72倍和2.20倍,属于危险废弃物,必须进行稳定化处理。当固化剂SGA加入量为0.1mol/kg时,稳定化后的重金属浸出浓度已经低于危险废物鉴别标准,且对Cd、Cr、Cu和Pb的固化性能优于SDD和Ca(OH)2;当固化剂SGA、SDD和Ca(OH)2加入量为0.5mol/kg时,稳定化后的焚烧飞灰重金属浸出浓度均低于国家危险废物鉴别标准(GB5085.3-2007)中的规定值。与SDD和Ca(OH):相比,SGA对垃圾焚烧飞灰中重金属的固化处理更具有优势。  相似文献   

3.
根据EPA 1311、HJ/T 299-2007、HJ/T 300-2007和HJ 557-2009等国内外不同标准,研究了深圳某垃圾焚烧发电厂垃圾焚烧飞灰的浸出毒性,探讨了六硫代胍基甲酸(sixthio guanidine acid,SGA)、二甲基二硫代氨基甲酸盐(sodium dimethyl dithio carbamate,SDD)和Ca(OH)2浓度对垃圾焚烧飞灰中重金属的固定性能的影响。研究结果表明,随着浸提液pH的降低,该厂焚烧飞灰中大部分金属元素的浸出量增大,焚烧飞灰浸出液中的Cd、Ni、Pb和Zn浓度分别超过国家危险废物鉴别标准(GB5085.3-2007)规定值的4.75倍、1.47倍、6.72倍和2.20倍,属于危险废弃物,必须进行稳定化处理。当固化剂SGA加入量为0.1 mol/kg时,稳定化后的重金属浸出浓度已经低于危险废物鉴别标准,且对Cd、Cr、Cu和Pb的固化性能优于SDD和Ca(OH)2;当固化剂SGA、SDD和Ca(OH)2加入量为0.5 mol/kg时,稳定化后的焚烧飞灰重金属浸出浓度均低于国家危险废物鉴别标准(GB 5085.3-2007)中的规定值。与SDD和Ca(OH)2相比,SGA对垃圾焚烧飞灰中重金属的固化处理更具有优势。  相似文献   

4.
Cubukcuoglu B  Ouki SK 《Chemosphere》2012,86(8):789-796
This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28 d.Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal.The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.  相似文献   

5.
Suzuki K  Ono Y 《Chemosphere》2008,71(5):922-932
This study was designed to elucidate the leaching characteristics of stabilized/solidified (S/S) fly ash generated by ash-melting. For this study, pH-dependent leaching tests, sequential extraction procedures, and column leaching tests were carried out. The pH-dependent leaching test results for Pb, Cu, and Zn showed that the heavy metal concentrations in the high-pH range were lower than the predicted values for hydroxide and carbonate. During sequential extraction, Cu and Pb were principally distributed in the S/S ashes' organic matter fraction in the chelating agent, suggesting that metals bind to the chelating agent. The percentage of the water-soluble fraction for Pb and Cu was low (<0.2 %). The fly ashes treated with a chelating agent and cement had low leachability potential for metals in the high-pH range. Column tests for S/S fly ashes showed that two leaching stages were distinguishable: one for short time, corresponding to faster metal leaching, and another for the leaching rate. Kinetic speciation was then applied to data obtained from column leaching tests. The first-order reaction/diffusion model showed a better fit for Ca, Pb, and Cu, suggesting that the initial dissolution of soluble compounds, such as metal chloride, was controlled by the first-order reaction (surface wash off). Subsequently, insoluble compounds such as hydroxide or carbonate might penetrate into the porous matrix by diffusion.  相似文献   

6.
Lee DJ 《Chemosphere》2006,63(11):1903-1911
The alkalinity of cementitious materials rectifies a low pH of leachant to be over 12 in leaching. The rapid change of leachant pH produces the remarked variation of solubility of heavy metals in the toxicity characteristic leaching procedure. The release of lead on cementitious solid waste forms in leaching was observed in the pH range of particularly 12. The release of lead is significant dependant on the changed values of leachant pH. The pH static leaching procedure (PSLP) was implemented for assessing a quantitative measurement of total potential leachability with the continuing addition of acidic leachant up to the point of no change of leachant pH. The release of lead on Pb-doped solidified waste forms (SWF), in the PSLP, was 27.0% of initial concentration at the maximum meq CH3COOH (about 24.0) added to g dry solidified wastes. In this study, the immobilization effect of calcite on SWF was investigated in the acidic condition by the PSLP. Calcite additions to SWF make a good fixation efficiency of about 92%. Calcite addition abundantly provides the acid neutralization capacity to protect SWF from the attack of acid, with the marked development of hydrated minerals (mainly portlandite and C–S–H) in accordance with the accelerating effect of cement hydration.  相似文献   

7.
城市生活垃圾渗透系数测试研究   总被引:1,自引:0,他引:1  
采用常水头测渗实验,对不同压实密度和水力梯度下的新鲜垃圾与陈垃圾的渗透系数进行测试,根据达西定律求得渗透系数值。由于垃圾的不均匀性、小颗粒的运动和大孔隙沟道流的形成和改变,实验初始阶段渗透系数值先增大至峰值,然后缓慢降低直至趋于稳定。实验稳定后,新鲜垃圾压实密度为0.75~0.95 t/m3时,渗透系数值约为1.26E-03~1.43E-03 cm/s。陈垃圾在压实密度分别为1.2和1.4 t/m3时,渗透系数为8.29E-04和1.35E-04 cm/s。  相似文献   

8.
ABSTRACT

Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.

CBPC binder and compaction can achieve 80-wt % waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was ~14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press.  相似文献   

9.
Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. CBPC binder and compaction can achieve 80-wt% waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was approximately 14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press.  相似文献   

10.
The effectiveness of cement based treatment technology, in immobilizing chromium laden electroplating sludge was assessed by conducting toxicity characteristic leaching procedure (TCLP). The mechanical stability of the blocks was tested by measuring the compressive strength. Other leaching tests such as NEN 7341 test, ANS 16.1 and multiple TCLP (MTCLP) test conducted on select solidified blocks showed that chromium was immobilized by the binder studied. A linear relationship was obtained between the cumulative fraction of chromium leached (CFL) and square root of time in the solidified samples proving that diffusion is the controlling mechanism for leaching of chromium. The leachability indices (LI) obtained for the solidified materials using cement and cement-fly ash system (EPC6, EPFC6A and EPFC6B) satisfy the guidance value as per US NRC, which clearly indicates that chromium is well retained within the solid matrix. Chromium concentrations in the TCLP leachates of the above mix ratios were well within the regulatory level of United States Environmental Protection Agency (USEPA). Molecular characterization of the solidified material was carried out using Fourier transformation infra red (FTIR) technique.  相似文献   

11.
WILT, ANS 16.1 and TCLP leach tests were performed on solidified/stabilized (s/s) wastes treated by Soliditech, Inc. of Houston, Texas as part of a U.S. EPA SITE demonstration project conducted in December 1988 at the Imperial Oil Company/ Champion Chemical Company Superfund site in Morganville, New Jersey. All three leaching tests performed on the s/s wastes indicated that the primary contaminants of concern (lead and PCBs) were not leachable. The ANS 16.1 static leach test for the s/s wastes provided diffusion coefficients (De) for Al, Ca, and Na that were comparable to those obtained from the WILT test. However, plots of the ANS 16.1 data indicated that wetting of the samples confounded the static leaching process. The large column WILT De was used to estimate that less than 0.8 μg/cm2 lead would leach from a one-cubic yard block of s/s waste in contact with groundwater over a 60-month leaching period. This corresponds to concentrations less than 10 μg/L lead in the water contacting the block of s/s waste.  相似文献   

12.
Environmental Science and Pollution Research - The proper disposal of municipal solid waste incineration fly ash (MSWI FA) is necessary due to the presence of hazardous metals (Cu2+, Zn2+, Pb2+ and...  相似文献   

13.
Digested sewage sludge solidification by converter slag for landfill cover   总被引:9,自引:0,他引:9  
Kim EH  Cho JK  Yim S 《Chemosphere》2005,59(3):387-395
A new technology for solidification of digested sewage sludge referred to as converter slag solidification (CSS) has been developed using converter slag as the solidifying agent and quick lime as the solidifying aid. The CSS technology was investigated by analyzing the physicochemical properties of solidified sludge and determining its microstructural characteristics. The feasibility of using solidified sludge as a landfill cover material was considered in the context of the economical recycling of waste. Sludge solidified using the CSS technology exhibited geotechnical properties that are appropriate for replacing currently used cover soil. Microscopic analyses using XRD, SEM and EDS revealed that the main hydrated product of solidification was CSH (CaO . SiO2 . nH2O), which may play an important role in the effective setting process. Negligible leaching of heavy metals from the solidified sludge was observed. The solidification process of the hydrated sludge, slag and quicklime eliminated the coliform bacteria. Recycled sewage sludge solidified using CCS technology could be used as an effective landfill cover.  相似文献   

14.
Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.  相似文献   

15.
The applicability of amorphous aluminium oxide as a fluoride retention additive to flue gas desulphurisation (FGD) gypsum was studied as a way of stabilizing this by-product for its disposal in landfills. Using a batch method the sorption behaviour of amorphous aluminium oxide was evaluated at the pH (about 6.5) and background electrolyte conditions (high chloride and sulphate concentrations) found in FGD gypsum leachates. It was found that fluoride sorption on amorphous aluminium oxide was a very fast process with equilibrium attained within the first half an hour of interaction. The sorption process was well described by the Langmuir model, offering a maximum fluoride sorption capacity of 61.7 mg g(-1). Fluoride sorption was unaffected by chloride co-existing ions, while slightly decreased (about 20%) by competing sulphate ions. The use of amorphous aluminium oxide in the stabilization of FGD gypsum proved to greatly decreased its fluoride leachable content (in the range 5-75% for amorphous aluminium oxide doses of 0.1-2%, as determined by the European standard EN 12457-4 [EN-12457-4 Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges-Part 4: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10mm (without or with size reduction)]), assuring the characterization of this by-product as a waste acceptable at landfills of non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on landfill of wastes. Furthermore, as derived from column leaching studies, the proposed stabilization system proved to be highly effective in simulated conditions of disposal, displaying a fluoride leaching reduction value about 81% for an amorphous aluminium oxide added amount of 2%.  相似文献   

16.
The use of coal fly ash as a fluoride retention additive has been studied as a way of treating flue gas desulphurisation (FGD) gypsum for its disposal in landfills. With this end leaching studies following the standard EN-12457-4 [Characterization of waste- Leaching-Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10l/kg for materials with particle size below 10mm (without or with size reduction)] have been performed on FGD gypsum samples treated with different proportions of fly ash (0.1-100%). It was found that the fluoride leachable content in FGD gypsum was reduced in the range 1-55%, depending on the fly ash proportion added to FGD gypsum. High levels of fluoride leaching reduction (close to 40%) were achieved even at relatively low fly ash additions (5%). So, low fly ash incorporations assure the characterization of this by-product as a waste acceptable at landfills for non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on waste disposal. Furthermore, the effectiveness of the proposed FGD gypsum stabilization method was also studied in column leaching systems, proving its good performance in simulated conditions of disposal. In such conditions a fluoride leaching reduction value slightly higher than 25% was displayed for a fly ash added amount of 5%.  相似文献   

17.
Shih CJ  Lin CF 《Chemosphere》2003,53(7):691-703
A preliminary survey of an arsenic contaminated site from an abandoned copper smelting facility and feasibility study of using solidification/stabilization (S/S) process to treat the contaminant waste were undertaken. It was found that the waste, located in the three-flue gas discharge tunnels, contained 2-40% arsenic. The pH of the contaminated waste is extremely low (ranging from 1.8 to 3.6). The X-ray diffraction evidence indicates that the arsenic particles present in the flue gas mainly exist as As(III), or As(2)O(3). The total amount of arsenic contaminated waste is estimated to be 700 ton in the studied area. About 50% of the particle sizes are less than 2 mm. Arsenic is easily extracted from wastes with a variety of leaching solutions. In order to meet the arsenic leaching standard of the toxicity characteristic leaching procedure (TCLP), an extremely high cement dosage is required in the S/S process (cement/waste weight ratio>6). The waste with lower particle size having higher specific surface area exhibits somewhat positive effect on the S/S performance. The use of fly ash from municipal waste incinerators, in conjunction with the reduced amount of cement, is able to meet the TCLP arsenic and lead standards. The use of lime alone could meet the TCLP arsenic standard, but lead leaching concentrations exceeded leaching Pb standard. The results of semi-dynamic leaching tests of some solidified samples indicate higher accumulated arsenic leaching concentrations after only a few leachant renewals.  相似文献   

18.
水泥对垃圾焚烧飞灰的固化处理试验研究   总被引:11,自引:4,他引:11  
对垃圾焚烧飞灰的化学成分、重金属物质的含量及浸出浓度进行测试分析.结果表明,飞灰中Pb和Cr等重金属物质浸出量超过浸出毒性标准,因而被认为是危险废物,必须进行固化处理.还考察了水泥对焚烧飞灰中重金属物质固化的效果,研究表明当飞灰掺量适当时,重金属物质的固化效果良好.重金属物质通过物理固封、替代,沉淀反应和吸附等形式可固化进水泥水化产物结构中.  相似文献   

19.
This study aimed to evaluate the leaching of pesticides and the applicability of the Attenuation Factor (AF) Model to predict their leaching. The leaching of carbofuran, carbendazim, diuron, metolachlor, alpha and beta endosulfan and chlorpyrifos was studied in an Oxisol using a field experiment lysimeter located in Dom Aquino-Mato Grosso. The samples of percolated water were collected by rain event and analyzed. Chemical and physical soil attributes were determined before pesticide application to the plots. The results showed that carbofuran was the pesticide that presented a higher leaching rate in the studied soil, so was the one representing the highest contamination potential. From the total carbofuran applied in the soil surface, around 6% leached below 50 cm. The other pesticides showed lower mobility in the studied soil. The calculated values to AF were 7.06E-12 (carbendazim), 5.08E-03 (carbofuran), 3.12E-17 (diuron), 6.66E-345 (alpha-endosulfan), 1.47E-162 (beta-endosulfan), 1.50E-06 (metolachlor), 3.51E-155 (chlorpyrifos). AF Model was useful to classify the pesticides' potential for contamination; however, that model underestimated pesticide leaching.  相似文献   

20.
Radionuclide sorption by natural and modified clays is extensively accepted to be an important process from the radioactive waste point of view. This work focused on modification of natural attapulgite with a layered double hydroxide to produce a novel chemisorbent for Sr2+, Ni2+, and Co2+ removal from multicomponent solution. The structural and surface characteristics of both attapulgite (ATP) and modified attapulgite (LDH-ATP) were investigated using XRD, FTIR, SEM, and thermal analysis. Comparison of sorption features of Sr2+, Ni2+, and Co2+ onto ATP and LDH-ATP was achieved; the results indicated that LDH-ATP was the most efficient sorbent for Sr2+, Ni2+, and Co2+. Kinetic studies established that the sorption is fast and reaching >90% within 30 min. The sorption of Sr2+, Ni2+, and Co2+ are well defined by non-linear pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity was determined using homogeneous surface diffusion (HSDM) model and found in the order 10−13 m2/min; this confirmed that the sorption of the three ions is chemisorption process. LDH-ATP can be employed as a candidate chemisorbent for the removal of some metal ions from waste solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号