首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
抗侵蚀型生态沟渠构建及其稻田应用效果   总被引:2,自引:0,他引:2  
根据沟渠水力学和工程力学特征,通过引进三维植物网护坡技术,构建了一种抗侵蚀型稻田生态沟渠,横断面0.9 m2,沟壁和沟底水生植物覆盖度分别为62.8%和35.3%,沟壁抗坡面侵蚀强度较土质沟渠可提高2倍以上,在优化污染物拦截去除功能的同时,大大延长了其使用寿命。稻田应用实验表明,径流排水停留时间超过48 h后,SS、TN和TP去除率分别达59.5%、57.8%和45.3%,配置比例按照1 hm2水稻田配300 m该型生态沟渠实施,则超过80%以上的稻田径流排水能够得到有效处理。该型生态沟渠工程造价约245元/m,接近传统混凝土排水渠单价,经近2年的运行观测,沟渠系统结构稳定,净化植物长势良好。  相似文献   

2.
In order to evaluate the stress effects of flumioxazin (fmx) on grapevine, a non-target plant (Vitis vinifera L.), physiological parameters such as carbohydrate content, water status or nitrogenous metabolites were investigated on fruiting cuttings and plants grown in vineyard. In the leaves of cuttings, the soil-applied herbicide induced stress manifestations including a decrease of the dry weight percentage and the soluble carbohydrate content during the first week after treatment. Thereafter, a decrease of the osmotic potential was observed, as well as a decrease of total protein content and a parallel accumulation of free amino acids, including proline. Altogether, these results suggest that soil-applied fmx induced a stress in grapevines, leading to leaf proteolysis. However, this stress was partially recovered 3 weeks after herbicide application, suggesting that the cuttings were capable to adapt to the fmx exposure. In the vineyard, the flumioxazin effects were still significant 5 months after the treatment, particularly in the CH cv. They included a decrease of the leaf dry weight percentage and soluble carbohydrate content, as well as an increase of the osmotic potential. The decrease of leaf soluble carbohydrates may have dramatic consequences for the berry growth and the reserve constitution. Moreover, treated plants were characterized by a decrease of the free amino acid content and an accumulation of ammonium, while the protein level did not significantly increase, suggesting a degradation of amino acids. The alteration of carbon and nitrogen status after herbicide treatment may affect the grapevine vigour in a long term.  相似文献   

3.
The denaturing gradient gel electrophoresis (DGGE) method was applied to determine the relative genetic complexity of microbial communities in flooded paddy soil treated with herbicide quinclorac (3,7-dichloro-8-quinoline-carboylic acid). The results obtained showed a significant effect of quinclorac on the development of bacterial populations in soils contaminated with different concentrations of the herbicide at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of the quinclorac differed obviously with increasing incubation time within the early 8 weeks. The scale of differences in banding patterns-showed that the microbial community structures of the quinclorac-treated and non-quinclorac-treated soils were not significantly different after 21 weeks of incubation. Quantification, as demonstrated in this paper, was studied by establishing dose-response relationships. Significant pattern variations were quantified. Prominent DGGE bands were excised, cloned and sequenced to gain insight into the identities of predominant bacterial populations. The majority of DGGE band sequences were related to bacterial genera Clostridium, Sphingobacterium, Xanthomonas and Rhodococcus.  相似文献   

4.
This study was designed to monitor molinate losses in surface and underground waters during Ordram application in a rice field situated in central Portugal. Water samples were collected from different sites, before, during and about one month and a half after Ordram application. Molinate quantification was based on a solid-phase microextraction (SPME) method followed by gas chromatography with flame photometric detector (GC-FPD) analysis, and led to the conclusion that the herbicide was dissipated in the environment, reaching levels as high as 3.9 microgl(-1) in underground water and 15.8 microgl(-1) in the river receiving tail waters. The feasibility of the application of treatment methodologies based on adsorption or biodegradation as processes to remove molinate from real-world waters was assessed. These methods seem suitable to reduce molinate concentrations to values in the range of the legally recommended limits (<0.5 microgl(-1)).  相似文献   

5.
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.  相似文献   

6.
Field monitoring was practiced from 2001 to 2003 to evaluate the input (irrigation, atmospheric deposition, and fertilizer application) and the output (uptake and accumulation into the above-ground biomass of rice plants and leaching) of cadmium (Cd) in a contaminated paddy field in Tokyo. The cadmium concentrations of irrigated water, open-bulk precipitation, soil solution (leaching water), rice plants collected at the harvesting stage and the chemical fertilizer and the cow manure compost applied were determined. The Cd flux of each factor was calculated by multiplying the Cd concentration by the volume or mass of the media. The annual input-output balance of Cd in the paddy field in 2001 and 2002 was estimated to be -5.44 [corrected] g ha(-1) and -2.01 [corrected] g ha(-1), respectively, indicating the loss of Cd from the paddy field, although the losses accounted for only 0.24% [corrected] and 0.089% [corrected] of the total amount of Cd in the ploughed layer soil in 2001 and 2002, respectively. Among the factors involved, the input from fertilizers (including manure compost) and the output due to the uptake by rice plants played a major role in the balance. The former largely depended on the types and amounts of fertilizers applied, and the latter on the water management practices in the paddy field, such as flooding and drainage of the surface water.  相似文献   

7.
确立了气相色谱法测定丙溴磷残留量的检测方法.采用该方法,丙溴磷在土壤、植株、糙米、稻壳和田水中的平均添加回收率为87.2%~103.6%,变异系数为3.20%~11.50%,最低检测质量浓度:田水为0.005 mg/kg;土壤、植株、糙米和稻壳为0.050 mg/kg.残留动态研究表明,丙溴磷在田水、植株和土壤中的半衰...  相似文献   

8.
The environmental fate and distribution of fungicide epoxiconazole were studied by a rice paddy field model ecosystem. One week before the head-sprouting stage, rice plant was treated separately once with OPUS (tradename of epoxiconazole) 12% SC 2.1 kg ha(-1) and 1.4 kg ha(-1), respectively. Soil, water and rice plant were sampled seven days intervals nine times after application. The bioconcentration factor of epoxiconazole on mosquito fish in the ecosystem was also determined, based on the amounts of epoxiconazole content both in fish and water. This was initiated one day after the fungicide treatment, and continued for four days. In addition, the residue of epoxiconazole in rice grains was analyzed after harvest. After harvest, both planted water spinach (Ipomoea aquatica Forsk) and edible amaranth (Amaranthus mangostanüs L.) were analyzed. The results showed that epoxiconazole degraded in the local environment under the experimental conditions described. The degradation equations were in accordance with the first order kinetics. The DT50 of soil, field water and rice plant were 20-69 days, 11-20 days and 14-39 days, respectively. The bioconcentration factors of epoxiconazole on mosquito fish were 12.9 and 10.6 from 2.1 kg ha(-1) and 1.4 kg ha(-1) treatment, respectively. Residues of epoxiconazole in both rice and harvest vegetables were non-detectable. This indicates that epoxiconazole applied to rice at the recommended rates and application frequencies will not accumulate on rice grain and successive cropping vegetables.  相似文献   

9.
Soil dissipation of the herbicide clopyralid (3,6-dichloropicolinic acid) was measured in laboratory incubations and in field plots under different management regimes. In laboratory studies, soil was spiked with commercial grade liquid formulation of clopyralid (Versatill, 300 g a.i. L(-1) soluble concentrate) @ 0.8 microg a.i. g(-1) dry soil and the soil water content was maintained at 60% of water holding capacity of the soil. Treatments included incubation at 10 degrees C, 20 degrees C, 30 degrees C, day/night cycles (25/15 degrees C) and sterilized soil (20 degrees C). Furthermore, a field study was conducted at the Waikato Research Orchard near Hamilton, New Zealand starting in November 2000 to measure dissipation rates of clopyralid under differing agricultural situations. The management regimes were: permanent pasture, permanent pasture shielded from direct sunlight, bare ground, and bare ground shielded from direct sunlight. Clopyralid was sprayed in dilute solution @ 600 g a.i. ha(-1) on to field plots. Herbicide residue concentrations in soil samples taken at regular intervals after application were determined by gas chromatograph with electron capture detector. The laboratory experiments showed that dissipation rate of clopyralid was markedly faster in non-sterilized soil (20 degrees C), with a half-life (t1/2) of 7.3 d, than in sterilized soil (20 degrees C) with t1/2 of 57.8 d, demonstrating the importance of micro-organisms in the breakdown process. Higher temperatures led to more rapid dissipation of clopyralid (t1/2, 4.1 d at 30 degrees C vs 46.2 d at 10 degrees C). Dissipation was also faster in the day/night (25/15 degrees C) treatment (t1/2, 5.4 d), which could be partly due to activation of soil microbes by temperature fluctuations. In the field experiment, decomposition of clopyralid was much slower in the shaded plots under pasture (t1/2, 71.5 d) and bare ground (t1/2, 23.9 d) than in the unshaded pasture (t1/2, 5.0 d) and bare ground plots (t1/2, 12.9 d). These studies suggest that environmental factors such as temperature, soil water content, shading, and different management practices would have considerable influence on rate of clopyralid dissipation.  相似文献   

10.
A field experiment located in TaiHu Lake Basin in China was conducted, by application of superphosphate or a mixture of superphosphate with manure, to elucidate the interception of P export during a typical rice growing season through 'zero-drainage water management' combined with sound irrigation, rainfall forecasting and field drying. P concentrations in floodwater rapidly declined before the first event of field drying, and subsequently tended to return to the background levels. Before the first field drying TPP was the predominant P form in floodwater on fields with no P input, DRP on plots that received superphosphate only, and DOP on plots treated with the mixture of superphosphate and manure. Thereafter TPP became the major form. No P export was found from the paddy fields, but a retention of 0.65kgha(-1), mainly due to soil P sorption. The results recommend the zero-drainage water management for full-scale areas for minimizing P export.  相似文献   

11.

The environmental fate of metazachlor herbicide was investigated under field conditions in rapeseed cultivated and uncultivated plots, over a period of 225 days. The cultivation was carried out in silty clay soil plots with two surface slopes, 1 and 5 %. The herbicide was detectable in soil up to 170 days after application (DAA), while the dissipation rate was best described by first-order kinetics and its half-life ranged between 10.92 and 12.68 days. The herbicide was detected in the soil layer of 10–20 cm from 5 to 48 DAA, and its vertical movement can be described by the continuous stirred tank reactor (CSTR) in series model. Relatively low amounts of metazachlor (less than 0.31 % of the initial applied active ingredient) were transferred by runoff water. More than 80 % of the total losses were transferred at the first runoff event (12 DAA), with herbicide concentrations in runoff water ranging between 70.14 and 79.67 μg L−1. Minor amounts of the herbicide (less than 0.07 % of the initial applied active ingredient) were transferred by the sediment, with a maximum concentration of 0.57 μg g−1 (12 DAA), in plots with 5 % inclination. Finally, in rapeseed plants, metazachlor was detected only in the first sampling (28 DAA) at concentrations slightly higher than the limit of quantification; when in seeds, no residues of the herbicide were detected.

  相似文献   

12.
Zuo Q  Lu CA  Zhang WL 《Chemosphere》2003,50(6):689-694
An investigation into phosphorus runoff and drainage from a paddy field was carried out at Changshu Agricultural Ecological Station of CAS during the year 2000. According to the preliminary study, some results indicated: (1) Total phosphorus (TP) content of regular irrigation water was 19 times higher than TP content of P0 (zero rate of P fertilization) stand water. This indicates that paddy fields are a potential source of phosphorus pollution by runoff and drainage into the Taihu Lake Basin (TLB); (2) During the first 10 days after phosphate fertilizer application, the TP concentration of stand water in the paddy field was very high, therefore this was the high risk period for Taihu Lake phosphorus contamination; (3) Four mathematical models of P losses from a paddy field in the TLB are developed. These are based on data for the year 2000, but they will be improved as more data is acquired in future years.  相似文献   

13.
Zhu JG  Liu G  Han Y  Zhang YL  Xing GX 《Chemosphere》2003,50(6):725-732
Nitrate concentration in well water collected from the wells near farm houses was investigated in the Taihu Lake basin (TBL) of China. Nitrate-N content of the well water ranged from 0.1 to 23 mgNl(-1), and 41% exceeded the criteria (10 mg Nl(-1)). It was found that the difference in well conditions, especially the depth of the well, was the main cause of the difference in the nitrate concentration of well water, i.e. it was higher in shallow well and lower in deeper well. A recommendation was made for local farmers to drill wells deeper than 10 m in order to reduce the risk of high ingestion of nitrate-N in their drinking water. Nitrate distribution and denitrification in the saturated zone of a paddy field under rice/wheat rotation in the TBL were studied. Porous pipes were installed in triplicate at depths of 1.5, 2.0, 2.5, 3.5 and 5 m respectively to collect the soil solution samples. Results showed that nitrate was the predominant N form in soil solution of saturated zone, and it increased from 1.5 to 2.5 m depth, and decreased from 2.5 to 5 m depth. N2O captured in the soil solution was very high comparing with N2O content in air. N2O content was positively correlated with nitrate concentrations in the soil profile. These results indicate that nitrate leached into saturated zone was mainly transformed via denitrification processes. Comparing the sum of inorganic nitrogen with the total nitrogen in soil solution samples collected from those wells at the field, some soluble organic nitrogen was found about 1-2 mg N l(-1) in average.  相似文献   

14.
Chen XM  Shen QR  Pan GX  Liu ZP 《Chemosphere》2003,50(6):703-706
The characteristics of nitrate horizontal transport in a major paddy soil, Wu Shan soil in the Tai Lake region, were studied. The concentration of nitrate during horizontal movement decreased with the increasing in distance from the tracer source, the change following a logarithmic function. The concentration of the nitrate was strongly correlated with the soil moisture content, as an exponential function. The horizontal transport velocity of nitrate was significantly correlated with the distance of the tracer source as power function. Therefore, the velocity of nitrate horizontal transport was controlled by the concentration gradient of nitrate, and soil water potential gradient from beginning to the 20 cm mark in the horizontal column. However, the velocity of nitrate horizontal was stable beyond 20 cm, where it was controlled by soil matric potential.  相似文献   

15.
This study was conducted to evaluate the effect of hairy vetch cover crop residue on runoff losses of atrazine and metolachlor under both no-till corn field plots and from a laboratory runoff system. A 2-year field study was conducted in which losses of atrazine and metolachlor from vetch and non-vetch field plots were determined from the first runoff event after application (5 and 25 days after application in 1997 and 1998, respectively). A laboratory study was conducted using soil chambers, designed to simulate field soil, water, vegetation, and herbicide treatment conditions, subjected to simulated rain events of 5, 6, 20 and 21 days after application, similar to the rainfall pattern observed in the field study. Atrazine losses ranged from 1.2 to 7.2% and 0.01 to 0.08% and metolachlor losses ranged from 0.7 to 3.1% and 0.01 to 0.1% of the amount applied for the 1997 and 1998 runoff events, respectively. In the laboratory study, atrazine runoff losses ranged from 6.7 to 22.7% and 4.2 to 8.5% and metolachlor losses ranged from 3.6 to 9.8% and 1.1 to 4.7% of the amount applied for the 5-6 and 20-21 day events, respectively. The lower losses from the field study were due to smaller rainfall amounts and a series of small rains prior to the runoff event that likely washed herbicides off crop residue and into soil where adsorption could occur. Runoff losses of both herbicides were slightly higher from non-vetch than vetch field plots. Losses from the laboratory study were related to runoff volume rather than vegetation type.  相似文献   

16.
A simple but comprehensive model is developed to quantify N losses from urea applied to a near-trench paddy field, considering all the N-transformations such as urea hydrolysis, volatilization, nitrification, denitrification, and all the important transportations like runoff, lateral seepage, vertical leaching and crop uptake. Seasonal average data of field observations for three crop seasons were used for model calibration and validation, which showed that ammonia volatilization accounted for 26.5-29.4% of the applied N and N uptake by crop occupied 38.2-44.8%, while N losses via surface runoff, vertical leaching and lateral seepage varied from 5.6-7.7%, 4.0-4.9% to 5.0-5.3% of the applied N, respectively. These observed results were well predicted by our model, indicating that the model performed effectively at quantifying N losses via individual processes in a wide range of urea application rates and benefit for developing water and fertilizer management strategies for near-trench paddy fields.  相似文献   

17.
18.
Persistence, stability, mobility and activity characteristics of organoclay and commercial formulation of alachlor were evaluated in soil columns and field plots in Gaza, Palestine. Relative concentrations of alachlor were accumulated in the top soil as determined by bioassay and consequently its mobility was retarded in soil treated with organoclay formulation. Alachlor applied as commercial EC formulation readily distributed through the soil media to a deeper depth. The herbicidal activity of alachlor applied as organoclay formulation was limited to the top soil whereas it disappeared from the top soil in plots treated with EC commercial formulation. Greenhouse and field experiments showed persistence, reduced mobility, safe and effective herbicide formulation at a significantly reduced applied rate when alachlor was applied as organoclay formulation.  相似文献   

19.
Jiang XJ  Luo YM  Liu SL  Ding KQ  Wu SC  Zhao QG  Christie P 《Chemosphere》2003,50(6):855-861
A laboratory incubation study was conducted using a paddy soil spiked with two quantities of Zn as soluble Zn(NO3)2 and unamended controls. Three single extractants (1 M ammonium acetate (pH 7.0), 0.43 M acetic acid and 0.05 M EDTA) were used to assess the bioavailability of Zn. Biological community assessments were made microbial biomass (chloroform fumigation), soil basal respiration and dehydrogenase activity. During the 84-day period of the experiment, addition of Zn at both 500 and 1,000 mg kg(-1) had little detectable effect on soil pH. The concentration of NH4OAc-extractable Zn decreased rapidly within the initial six weeks. The concentration of HOAc-extractable Zn showed no decrease during 84 days incubation. EDTA-extractable Zn was greater than NH4OAc- and HOAc-extractable fractions, and showed a similar trend to NH4OAc-extractable after incubation. Microbial biomass, soil basal respiration and dehydrogenase activity all decreased over time during 84 days incubation. Addition of Zn resulted in a significant increase in specific respiration (qCO2). Microbial biomass and dehydrogenase activity did not appear to be influenced by added Zn, probably due to the strong buffering capacity of the soil. The Zn extracted by EDTA, HOAc and NH4OAc showed close relationships with each other (p < 0.001). Zinc extracted by 0.05 M EDTA and NH4OAc were highly correlated with soil basal respiration and specific respiration rate (p < 0.01). The results suggest that NH4OAc-extractable Zn combined with soil specific respiration could be used as parameters for risk assessment.  相似文献   

20.
The effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides (OCPs) was investigated. Soil residues of OCPs were analyzed in vegetable fields which had been converted from paddy fields for 0, 5, 10, 15, 20, 30, 50 year in Yixing, China in 2003. The mean concentrations of OCPs followed a sequence of: ∑DDTs (13.7 μg kg−1) > ∑HCHs (8.6 μg kg−1) > > HCB (2.09 μg kg−1) > α-endosulfan (1.30 μg kg−1) > endrin (1.08 μg kg−1) > PCNB (0.76 μg kg−1) > dieldrin (0.58 μg kg−1). The mean residues of OCPs especially DDTs increased significantly with vegetable planting time after land use change in the first 15 years, then decreased from 20 to 30 years and increased a little afterward. The time under anaerobic and aerobic conditions was suggested to control mainly the change of the residues of OCPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号