首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
螺旋升流式反应器与SBR生物除磷系统的比较研究   总被引:2,自引:0,他引:2  
利用螺旋升流式反应器(Spiral Up-Flow Reactor,SUFR)进行了生物除磷的试验研究,并且与SBR反应系统的处理效果进行了对比分析。SUFR反应系统稳定运行六个月的结果表明,对COD和TP的去除率分别达94%和96%以上,优于SBR的处理效果。流态试验表明SUFR反应器的螺旋流动特征使其接近于推流式反应器,有利于在空间上形成有机物的梯度分布。而且SUFR反应器的螺旋升流特征有利于微生物种群的多样化及颗粒污泥的形成,使得该系统所形成的微生物生态系统更稳定,污泥指数较低,污泥的稳定性较好。  相似文献   

2.
低温污水前置强化混凝   总被引:1,自引:0,他引:1  
刘海龙  任宇霞  张忠民 《环境科学》2018,39(5):2239-2248
研究低温对强化混凝过程的影响,合成新型复合混凝剂(Synth A),利用膜分离分级、三维荧光光谱(3DEEM)和紫外差异分析等技术研究常温、低温(2~5℃)条件下强化混凝对溶解性有机物、溶解性有机氮等的去除特征及其对后续生物处理的影响.结果表明,常温下氯化铝(AlCl_3)、聚合氯化铝(PACl)和Synth A混凝后浊度去除率和颗粒态COD、N去除率,胶态COD、N去除率高度相关;与相应溶解态指标关系不明确.混凝对溶解性有机物荧光响应值的去除率远高于溶解态COD的去除率.溶解性有机氮(DON)是除颗粒氮(PN)和胶态氮(CN)外,前置混凝分离去除总氮(TN)的主要部分.低温对强化混凝的影响主要体现在,低温抑制上述3种混凝对浊度和COD去除,且抑制程度依次为AlCl_3PAClSynth A;低温对颗粒态、胶态和溶解态COD、N的混凝去除效果产生不同程度的影响,且对颗粒态和胶态COD、N的负面影响较大.低温原水溶解性有机物荧光响应值较常温原水大幅度升高.低温混凝对荧光响应值及紫外差异吸收的影响较常温更为显著.低温条件下,Synth A对TN、DN及DON的去除率较常温略有提高,保持了对PN和CN的去除能力,投量为30 mg·L-1以上时,DON去除率约为28.5%~41.7%,而常温仅为17%~31.4%.采用前置混凝分离去除大量COD和一定量的TN,能大幅减少曝气池停留时间,稳定TN控制效果.因而冬季采用Synth A等低温适应性强的混凝剂强化前置混凝可以在一定程度上弥补生化效率降低,缓解脱氮压力,稳定处理效果.  相似文献   

3.
螺旋升流式反应器脱氮除磷效果及其特性的研究   总被引:19,自引:2,他引:17  
利用螺旋升流式反应器 (SpiralUp FlowReactor,SUFR)系统进行了生物脱氮除磷的试验研究 ,该系统连续稳定运行两个月的结果表明 ,对TN、TP和COD的去除率分别达 86 %、96 %和 94 %以上 .对SUFR系统的反应特性进行了分析 :(1)螺旋流动特征使本反应器的形式接近于活塞流反应器 ,有利于在空间上形成有机物的浓度梯度分布 ;(2 )SUFR系统表现出了较好的有机底物和氧气的传质特性 ;(3)SUFR系统中的微生物种群具有多样化 ,所形成的微生物生态系统更稳定 ,抗外界干扰及恢复调节能力强  相似文献   

4.
采用缺氧/好氧一体式膜生物反应器(A/O-MBR)处理城市污水,试验结果表明:系统处理效果稳定,出水COD、NH3-N、TN的平均去除率分别达到92%、95%和80%以上,各项出水水质优于《城市杂用水水质》(GB/T18920-2002)标准。当水力停留时间在6~18 h、曝气强度(气水比)在20∶1~60∶1之间变化时,水力停留时间和曝气强度对MBR运行效果的影响不甚显著;温度对COD去除的影响不大,但温度对NH3-N、TN有显著的影响,温度由9.5℃升至30℃时,NH3-N、TN去除率分别由6.2%、7.9%提高到99.0%、83.3%。  相似文献   

5.
为了强化污水脱氮除磷性能,采用厌氧/缺氧/好氧(A~2/O)耦合生物曝气滤池(BAF)组合工艺,考察其对营养盐和有机物去除效果,并进一步探究温度的潜在影响。结果表明:A~2/O耦合BAF能实现有机物和氮、磷的同步深度去除,有机物、TN和TP去除率分别高达90%、85. 2%和93%。温度为15,25,35℃时COD去除率变化不大,基本维持在90%以上,45℃时略低于其他温度。NH_4~+-N去除率随温度的升高呈现上升趋势,NO_2~--N、NO_3~--N去除效果在35℃时最佳,厌氧释磷量和缺氧、好氧吸磷量也在35℃达到最大值。可见,A~2/O耦合BAF系统最佳脱氮除磷温度为35℃。  相似文献   

6.
在不同温度下,研究了流化填料分格式SBR工艺(简称MESBR工艺)与传统的SBR工艺的COD去除率,有机物降解速率,脱氮效果和污泥沉降性能。结果表明:MESBR系统温度下降到5℃时,COD的去除率基本稳定在90%以上,比传统SBR系统高出15%左右;MESBR系统与传统SBR系统的温度系数θ分别为1.021和1.045。温度由20℃下降至5℃时,传统SBR系统的TN和NH3-N去除率分别降低26.5%和20%,而MESBR系统分别降低18.6%和11%。传统SBR系统SVI值随温度变化较大,当温度下降到5℃时SVI值达到234.8 mL/g,而MESBR系统的SVI值没有明显的变化,基本维持在120~130 mL/g。  相似文献   

7.
碳氮比及HRT_S对交替缺氧/好氧CAST去除营养物的影响   总被引:2,自引:2,他引:0  
王丽  彭永臻  马娟  刘洋  马宁平 《环境科学》2010,31(10):2370-2375
以实际生活污水为处理对象,分别研究了碳氮比(COD/TN)为2.6、3.5及4.4时,HRTS(选择器水力停留时间)对交替缺氧/好氧(A/O)CAST工艺去除营养物性能的影响.结果表明,采用交替A/O运行方式,进水COD/TN比及HRTS的变化对COD去除性能影响不明显;而对脱氮性能影响较大.当进水COD/TN比分别为2.6和3.5时,系统氨氮去除率均维持在98%以上,TN去除率则随HRTS的增大而升高;HRTS由1.8h增至5h时,2种碳氮比下的TN去除率分别由62.9%、72.1%升至76.2%、84.6%.当进水COD/TN比为4.4时,HRTS由1.8h增至5h导致系统硝化不完全,TN去除率由86.3%降至58.2%.研究还发现,提高COD/TN比和增大HRTS均能改善系统的除磷性能.本研究中交替A/O运行方式下,进水COD/TN比为4.4(远低于一般城市生活污水的8~10),HRTS为1.8h时,CAST工艺获得较好的脱氮除磷效果,TN及磷的去除率分别为86.3%和93.8%,出水达到我国城镇污水处理厂污染物排放标准(GB18918-2002)一级A要求.  相似文献   

8.
新型反应器(SUFR)去除城市污水中氮和磷的试验研究   总被引:3,自引:0,他引:3  
开发了一种新的污水生物处理反应器——螺旋升流式反应器(Spiral Up-Flow Reactor,SUFR),与传统的“池型反应器”(如氧化沟)相比,既提高了反应器中稳定的活塞流流态的容积利用率,又便于工程应用。运用SUFR对生物脱氮除磷进行了研究,系统连续稳定运行6个月的结果表明,该系统能保证出水平均质量浓度COD小于31mg/L,总氮小于10mg/L,总磷小于0.50mg/L,对COD、TN和TP的去除率分别达94%、86%和96%以上。对去除性能的分析结果表明,(1)SUFR系统厌氧反应器、缺氧反应器和好氧反应器对COD的去除量分别占去除总量的51.2%、12.5%和36.3%;(2)在去除总氮时,好氧反应器表现出了同步硝化反硝化功能,其对总氮的去除量约占SUFR系统去除总量的10%~20%;(3)去除总磷时,缺氧反应器表现出了反硝化吸磷现象,吸磷的量与进水COD质量浓度有关。  相似文献   

9.
甲胺、甲醇及其产品均具有较强的毒性和危险性,因此含甲胺的废水须经一定处理达标后才能排放.以山东肥城某化工厂含甲胺、甲醇混合(体积比1∶1)废水.在常温条件下,采用厌氧 好氧(UASB SBR)2级串联组合工艺进行处理.该甲胺,甲醇混合废水呈酸性,COD浓度较高.其BOD与COD比值为0.64.可生化性良好.试验中调整、控制UASB和SBR反应器的各运行参数,通过检测处理效果比较得出该工艺在常温条件下处理该化工废水的最佳运行参数值.试验结果表明UASB在常温下运行81d,启动基本完成.UASB最佳水力停留时间为24h整个工艺对COD有机物有一定的去除效果,COD平均去除率为68.14%;系统的TN去除效率较为稳定.平均去除率可达72.3%.出水TN浓度在16.56mg/L以下;系统有一定的抗冲击负荷能力,但不是很强;系统有一定的耐低温性,低温环境下(9.0~14.2'C.平均为12.3℃)系统COD平均去除率为55.80%,UASB反应器未发生酸化现象.  相似文献   

10.
采用序批式动态膜生物反应器处理模拟生活污水,讨论不同反应周期、处理水量及不同的好氧、厌氧时间比对污水的处理效果。结果表明:序批式动态膜生物反应器(SDMBR)在反应周期为6h,处理水量为18L时,COD,NH4^+-N和TN平均去除率最高,分别达到92.0%,88.4%和70.9%,相同反应周期与处理水量条件下,好氧、厌氧时间比为4:2时,处理效果最佳,COD,NH4^+-N和TN平均去除率分别达到90.0%和85.0%和69.0%;滤饼层对浊度有很好的去除效果,稳定运行时出水浊度可降至2NTU以下。  相似文献   

11.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

12.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

18.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

19.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

20.
Effects of chitosan on a submersed plant, Hydrilla verticillata, were investigated. Results indicated that H. venicillata could prevent ultrastructure phytotoxicities and oxidativereaction from polluted water with high chemical oxygen demand (COD). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in H. verticillata treated with 0.1% chitosan in wastewater increased with high COD (980 mg/L) and decreased with low COD (63 mg/L), respectively. Ultrastructural analysis showed that the stroma and grana of chloroplast basically remained normal. However, plant cells from the control experiment (untreated with chitosan) were vacuolated and the cell interval increased. The relict of protoplast moved to the center, with cells tending to disjoint. Our findings indicate that wastewater with high COD concentration can cause a substantial damage to submersed plant, nevertheless, chitosan probably could alleviate the membrane lipid peroxidization and ultrastructure phytotoxicities, and protect plant cells from stress of high COD concentration polluted water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号