首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient systems for applications on Earth.  相似文献   

2.
Fossil energy and chemical sources are depleting. There is a critical need to change the current industry and human civilization to a sustainable manner, assuring that our way of life actual continues on the path of improvement after the depletion of fossil energy sources. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. Biorefinery is a concept of converting lignocellulosic biomass or grains (such as corn) to chemicals, materials and energy on which human civilization runs, replacing the need for petroleum, coal, natural gas, and other nonrenewable energy and chemical sources. Lignocellulosic biomass is renewable, that is plant synthesizes chemicals (by drawing energy from the sun and carbon dioxide) and water from the environment, while releasing oxygen. Combustion of biomass releases energy, carbon dioxide and water. Therefore, biorefinery plays a key role in satisfying human needs for energy and chemicals by using the biomass production and consumption cycle. This paper focuses on a biorefinery concept and in particular on the bioethanol production from wood residues. In order to evaluate the environmental reliability of the system under study, the biorefinery plant (producing bioethanol and electricity from wood residues) was compared, by using the LCA methodology, to both conventional refinery system (producing light fuel oil and electricity from petroleum) and biorefinery plant based on corn feedstock producing the same goods. Interesting considerations about LUC emissions effect on biorefinery sustainability are also reported. The obtained results show that by assigning reasonable values to the three damage categories used in the eco-indicator 99 methodology the biorefinery system is preferable, from an environmental point of view, to the conventional refinery system analysed. This finding confirms the high potentials of this innovative plant technology.  相似文献   

3.
The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.  相似文献   

4.
During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.  相似文献   

5.
Because bioremediation must satisfy the fundamental biological tastes of specific organisms, environmental engineers must create a nutritious waste stew. Waste-hungry organisms need a proper electron acceptor. Oxygen is preferred; if it is not available, nitrate, sulfate, or carbon dioxide may work. The waste itself is a source of carbon and energy. Macronutrients are next—including phosphorus, nitrogen, and certain metals, if they are not already present in the wastewater—as well as micronutrients. Other factors, including pH, temperature, aeration, and mixing must suit the organisms' natural temperaments. This article explores how bioengineers can combine these ingredients in precise quantities and proportions in both conventional and innovative aerobic and anaerobic bioprocesses, including in situ treatment and even composting, to make the organisms healthy, happy, and inexpensive.  相似文献   

6.
Long-term flights or the establishment of permanent bases in space provide serious challenges for life support systems. Plants are essential companion life forms for such space missions, where human habitats must mimic the cycles of life on earth to generate and recycle food, oxygen and water. Nowadays, the chemical–mechanical recycling systems used in the international space station are much more compact, less labour intensive and more reliable than plant-based systems, but these systems would be too expensive for the long-term human exploration. In order to improve living conditions for humans and plants, we need an accurate characterisation of the mass transfer phenomena related to condensation of humid air. We are interested in developing an experimental protocol, which would help us to establish a theoretical model describing the heterogeneous transfers along a wall or a plant in an air-conditioned environment. Initially, we started in dry conditions by measuring the velocity profiles within the boundary layer that develop on a horizontal or a vertical flat plate in a wind tunnel. The velocity ranged from 0.5 to 2.5 m s?1. Existing coupled heat and mass transfer measurement results relevant to our applications are discussed.  相似文献   

7.
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.  相似文献   

8.
Travis Air Force Base, California, has accelerated the pace of remediation while reducing long‐term costs and cutting greenhouse gas production. This has been achieved through optimizing existing systems and processes, adopting greener cleanups best management practices, and testing and implementing innovative “green” technologies. By optimizing and replacing existing systems that used energy‐intensive infrastructure, and by promoting the use of innovative in situ technologies, the US Air Force (Air Force) led team comprised of the Air Force Civil Engineer Center, the US Army Corps of Engineers, the performance‐based contractor CH2M, and the regulatory agencies consisting of the US Environmental Protection Agency, the California Water Board, and the California Department of Toxic Substances Control, has reduced annual system operation and maintenance costs by over $200,000 per year, while reducing annual carbon dioxide production by approximately 930 tons per year. As a result of these actions, chlorinated solvent source areas have been reduced by over 99 percent in some cases, and the predicted cleanup time frame for multiple sites has been reduced by several decades. This article provides a case study for implementation of cost‐effective greener cleanup actions, and summarizes the approach taken by the Air Force led team to complete the greener cleanups self‐declaration process consistent with the ASTM International's E‐2893 Standard Guide for Greener Cleanups.  相似文献   

9.
Abandoned‐mine drainage (AMD) is drainage flowing from or caused by surface mining, deep mining, or coal refuse piles that is typically highly acidic with elevated levels of dissolved metals. AMD results from the interactions of certain sulfide minerals with oxygen, water, and bacteria. Passive treatment systems have been used to remediate AMD at numerous sites throughout the United States. The theory behind passive treatment is to allow naturally occurring chemical, biological, and physical reactions that aid in AMD treatment to occur in the controlled environment of the system, not in the receiving water body. The advantages of passive treatment over active treatment include lower operation and maintenance costs, virtually no use of chemicals, and minimal energy consumption. The disadvantages are that smaller volumes of water are treated than with active systems, and discharges with high concentrations of dissolved metals and extremes of pH may have to be treated several times within one system to treat the discharge. AMD passive treatment systems include aerobic treatment systems and anaerobic treatment systems. It is estimated that it will take 50 years and between $5 billion and $15 billion to remediate all AMD problems in Pennsylvania. © 2001 John Wiley & Sons, Inc.  相似文献   

10.
Steam gasification in the presence of carbonate compounds is an effective method to recover useful materials from electronic waste streams by converting plastics into gaseous products that can be used for energy production and avoiding the expensive manual disassembly process. We investigated steam gasification of activated carbon in the presence of various mixtures of lithium carbonate, sodium carbonate, and potassium carbonate. The activated carbon was almost completely converted into hydrogen and carbon dioxide at 700°C under 0.1 MPa pressure in the presence of carbonate mixtures. Carbon dioxide was also derived from partial decomposition of lithium carbonate. Steam gasification was accelerated in the presence of various carbonate mixtures and at increasing steam partial pressures. These experimental results show that fluidity of carbonates, the potassium content of the carbonate, and the steam partial pressure are important factors in accelerating steam gasification.  相似文献   

11.
Microbial degradation of selected odorous substances   总被引:11,自引:0,他引:11  
A biological odor treatment system has several advantages compared to conventional physical and chemical treatment technologies: (1) it is highly efficient in the treatment of waste gases characterized by high flow rates and low concentrations of contaminants; (2) the biodegradable pollutants are completely destroyed; and (3) it has low cost [Devinny, J.S., Deshusses, M.A., Webster, T.S., 1999. Biofiltration for Air Pollution Control. Lewis Publisher, New York, USA; Kennes, C., Veiga, M.C., 2001. Bioreactors for waste gas treatment. Kluwer Academic Publishers, London]. Because microorganisms play the major role in the successful biological odor treatment system, the understanding of microbial degradation of the key odorants is very important. This article describes the occurrence and the characteristics of selected key odorous compounds such as sulphides, amines, and pyrazine compounds. The article reviews available information in the literature and our experimental results of microbial degradation of the selected compounds. This is the first article that presents the isolation and characterization of bacterial strains that can utilize dimethyl trisulfide (DMTS), triethylamine (TEA) or different pyrazines, as a sole carbon and energy source. The biological degradation pathways of some of these compounds are postulated. Moreover, the influence of the presence of other odorous compounds in the culture medium on the degradation of the target odorous compounds by the isolated bacteria is presented. The information presented in the paper can be used to develop new systems for biological odor treatment.  相似文献   

12.
Water treatments fall into two broad classes; those that remove or destroy specific classes of pollutants, i.e. color, metal ions, hardness, sediment, bacteria, etc., and those that remove water from nearly all of the pollutants. The first class includes sedimentation, biological treatment by microbes, chemical precipitation, adsorption on active carbon or ion exchange resins, and disinfection. The second class includes distillation, freezing and reverse osmosis (RO). The first class are the least expensive in terms of energy and have a long history of successful use on a large scale to reclaim water containing sewage. Most of the second group are energy intensive and have been used primarily on a moderate scale. All processes, except disinfection, leave a residual sludge or brine that contains a substantial quantity of water.Many of the problems of treating waste water for reuse on Earth stem from the fact that waste water carries pathogenic organisms from one location to another and may spread disease over long distances. In a closed group, such as in a Space Station, there are so many other routes for transfer of microorganisms, i.e. in the air, on surfaces, by hand-to-mouth, that undue emphasis on disinfection of water is inappropriate. Successful examples of water reuse on Earth are reviewed in terms of their possible application in space.  相似文献   

13.
Odour management and treatment technologies: an overview   总被引:4,自引:0,他引:4  
There is a large variety of options available for the effective treatment of odorous emissions. The most important physical, chemical and biological treatment processes are shortly described and their favourable applications, as well as their limits, are highlighted. But for a sustainable solution of an industrial odour problem, there is more involved than just the installation of a waste gas treatment system. This article focuses on a general and systematic approach towards extensive odour management. First of all, an odour assessment should be worked out where all actual and potential odour emission sources are recorded and characterised. A special focus should be set on fugitive emissions, which may have an enormous impact on the overall odour problem. They need to be captured before they can be supplied to a treatment system. According to the composition and condition of the waste gases, an appropriate treatment system must be selected. For this purpose, test systems have been developed and are presented in this article.  相似文献   

14.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

15.
Experience with the use of LCA-modelling (EASEWASTE) in waste management.   总被引:2,自引:0,他引:2  
Life-cycle assessment (LCA) models are becoming the principal decision support tools of waste management systems. This paper describes our experience with the use of EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies), a new computerized LCA-based model for integrated waste management. Our findings provide a quantitative understanding of waste management systems and may reveal consistent approaches to improve their environmental performances. EASEWASTE provides a versatile system modelling facility combined with a complete life-cycle impact assessment and in addition to the traditional impact categories addresses toxicity-related categories. New categories dealing with stored ecotoxicity and spoiled groundwater resources have been introduced. EASEWASTE has been applied in several studies, including full-scale assessments of waste management in Danish municipalities. These studies led to numerous modelling issues: the need of combining process-specific and input-specific emissions, the choice of a meaningful time horizon, the way of accounting for biological carbon emissions, the problem of stored ecotoxicity and aspects of crediting the waste management system with the savings inherent in avoided production of energy and materials. Interpretation of results showed that waste management systems can be designed in an environmentally sustainable manner where energy recovery processes lead to substantial avoidance of emissions and savings of resources.  相似文献   

16.
The first commercial supercritical water oxidation sludge processing plant   总被引:20,自引:0,他引:20  
Final disposal of sludge continues to be one of the more pressing problems for the wastewater treatment industry. Present regulations for municipal sludge have favored beneficial use, primarily in land application. However, several agencies and entities have warned of potential health risks associated with these methods. Hydrothermal oxidation provides an alternative method that addresses the health concerns associated with sludge disposal by completely converting all organic matter in the sludge to carbon dioxide, water, and other innocuous materials. A hydrothermal oxidation system using HydroProcessing, L.L.C.'s HydroSolids process has been installed at Harlingen, Texas to process up to 9.8 dry tons per day of sludge. Based on a literature review, this system is the largest hydrothermal oxidation system in the world, and the only one built specifically to process a sludge. Start up of Unit 1 of two units of the HTO system began in April 2001. Early results have indicated COD conversion rates in excess of 99.9%. Harlingen Waterworks System estimates that the HydroSolids system will cost less than other alternatives such as autothermal thermophilic aerobic digestion and more traditional forms of digestion that still require dewatering and final disposal. The Waterworks intends to generate income from the sale of energy in the form of hot water and the use of carbon dioxide from the HydroSolids process for neutralization of high pH industrial effluent. The Waterworks also expects to generate income from the treatment of septage and grease trap wastes.  相似文献   

17.
Although many conventional physical remediation methods are viewed as proven, they often only relocate wastes to other sites or into the air. How do the emerging biological and chemical in situ methods perform in the same applications? This article reviews their results (much of it in the laboratory) as well as their promise of more complete neutralization of hazardous wastes, lower capital costs, and longer-duration cleanup processes. The optimal method may be a combination of chemical and biological in situ techniques with physical pump-and-treat methods.  相似文献   

18.
Since carbon compounds are the main component of dense nonaqueous phase liquids (DNAPLs), the end products of all in situ chemical oxidation (ISCO) will include carbon dioxide. If the production rate of carbon dioxide exceeds the capacity of water to remove the carbon dioxide, degassing will occur. The uncontrolled carbon dioxide gas may change the flow patterns, remobilize the pooled DNAPL, transport DNAPL vapor, and reduce the relative permeability to the aqueous phase. Under high pH buffered conditions, most of the carbon dioxide will be dissolved in water. In this study, potassium permanganate oxidation of tetrachloroethylene (PCE) was conducted using a sodium carbonate buffered solution (1 g/L, pH = 10.6 ± 0.1) at three different temperatures (5, 10, and 20°C) and three potassium permanganate concentrations (0.2, 1, and 5 g/L). Extensive kinetic studies suggest that the overall oxidation is a second‐order reaction and pseudo‐first‐order with respect to PCE and potassium permanganate, respectively. The second‐order rate constant and the activation energy were 0.028 ± 0.001 M?1s?1 at 20°C and 43.9 ± 2.85 kJ/M, respectively. This study provides a base for further experimental and field studies on potassium permanganate oxidation of PCE under natural or artificial high pH buffered conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
During the past decade, various promising technologies have been developed for the decontamination of groundwater insitu which do not require long-term pumping or high energy consumption. One approach is to use funnel and gate technology. In the case described here, the combination of adsorption of contaminants on granular activated carbon (GAC) and its biodegradation is applied to considerably extend the operating time of the filling material in the barrier system. Monochlorobenzene (MCB), a recalcitrant groundwater contaminant under anaerobic conditions, undergoes high-capacity adsorption on GAC up to about 450 mg per gram. Aerobic enrichment cultures, obtained from a contaminated aquifer, were able to mineralize initially adsorbed MCB. In respirometer experiments the rate of carbon dioxide formation was dependent on the equilibrium concentration of MCB. The oxygen consumption of activated carbon by means of autoxidative reactions may delay aerobic biodegradation in GAC filters. The oxygen uptake of pristine activated carbon amounted to 5.6 mg per gram GAC in laboratory column experiments. When GAC was pre-loaded with MCB, autoxidation rates were considerably reduced. Hence, it is advisable not to stimulate the biodegradation of MCB by oxygen supply in GAC biobarriers until after an initial period of solely sorptive MCB removal from the groundwater flow.  相似文献   

20.
Testfilter systems help in the study of the persistence of organic compounds. Hence, they are remedial measures to control pollution of the environment. The filters used as biological fixed-bed reactors should enable the simulation of the biological degradation of organic compounds before they reach the waterworks. The German chemical industry has used filters based on activated carbon for more than 20 years in order to determine the microbial poorly degradable fraction of the dissolved organic carbon in the sewage effluents. The testfilter systems proved to work well on the basis of group and ‘sum’ parameters. The new challenge was to investigate whether the testfilter concept holds also for a diversification of drinking water relevant and non-relevant single compounds. Therefore, the first task was to develop analytical methods for classes of drinking water relevant compounds in the very complex matrix of waste water. Thereafter, these methods were applied for the detection of the selected compounds in the testfilter systems and their occurrence in the receiving waters. Methods of analysis were developed for the following classes of chemical compounds: aliphatic amines, aromatic sulfonates, halogenated carboxylic acids and organic phosphates. Furthermore the formation of yet unknown drinking water relevant compounds was studied. As a result it was concluded that the major reasons for the formation of these compounds are: (1) formation of by-products during various steps in the chemical synthesis; (2) chemical reactions in the influents of the treatment plants; and (3) metabolism in the waste water treatment plant. Experiments with compounds like 6-[methyl(phenylsulfonyl)amino]hexanoic acid (HPS) and nitrilotriacetic acid (NTA) which are known from the literature to be well degradable, confirmed that the testfilters can be utilized for simulating the performance of the underground passage. On the other hand, persistent compounds, for which 1,5-naphthalenedisulfonate is a characteristic representative, remained in the filter system without being degraded. As far as the testfilters are concerned it was concluded that the activated carbon retains its adsorption capacity to a certain extent even after a long time of operation. Because it is not possible to distinguish between microbial degradation and adsorption, it was necessary to develop a modified filter set-up for testing single substances. ©  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号