首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annular denuders coated with KI and with alkaline solutions have been tested for their ability to remove atmospheric pollutants including ozone, NO2, SO2, formaldehyde, methyl nitrate and peroxyacetyl nitrate. Tests were carried out at flow rates of 0.4–2.0 ℓ min−1, using particle-free ambient air as well as purified air to study the effect of atmospheric CO2 on alkaline denuder performance. Denuders coated with KI were efficient in removing O3, NO2, SO2 (> 95%) and PAN (84±3%) but not methyl nitrate (44%) and formaldehyde (<5%). Selective removal of PAN from NO2, and vice versa, could be obtained with annular denuders coated with NaOH, which removed 100% PAN and ⩽15% NO2, and with alkaline guaiacol, which removed ⩾99% NO2 and ⩽6% PAN.  相似文献   

2.
Ambient levels of the nitrogenous pollutants NO, NO2, nitric acid, nitrous acid, ammonia, particulate nitrate, particulate ammonium, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured at a southern California mountain forest location severely impacted by urban photochemical smog. Air quality at the mountain forest location was characterized by high levels of nitric acid (up to 18 ppb) and the phytotoxic peroxyacyl nitrates PAN (up to 22 ppb) and PPN (up to 5 ppb). Alkyl nitrates were below our detection limits of 0.05–0.5 ppb. The (PAN + PPN)/NO2 ratios varied substantially (range 0.03–2.27) and were generally large, with typical 24-h averages of 0.19–0.50. Diurnal variations of the (PAN/PPN)/NO2 ratio exhibited both nighttime and daytime maxima reflecting diurnal variations in PAN (and PPN) thermal stability and photochemical production rates, respectively. Organic nitrogen-containing oxidation products (PAN + PPN) were more abundant than inorganic nitrate (HNO3 + NO3), with an average organic/inorganic concentration ratio of 2.5 (daytime ratio 1.0; nighttime ratio 3.7). The four oxidation products PAN, PPN, HNO3 and NO3 together accounted for 0.26 of the total reactive nitrogen. The results are discussed with respect to diurnal and seasonal variations and in terms of NO2 atmospheric oxidation pathways. Deposition fluxes and velocities to ponderosa pine have been measured for inorganic nitrate and for ammonium and have been compared with those obtained at other mountain forest locations.  相似文献   

3.
A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min−1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min−1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16–156 ppb) and sampling duration (1.5–72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.  相似文献   

4.
The objective of this continuing investigation of indoor/outdoor/surface relationships has been to develop an accurate method for predicting and subsequently managing the accumulation rates and ultimately the effects of corrosive substance on electronic equipment surface in field and manufacturing environments. We previously reported indoor/outdoor ratios and deposition velocities for Cl, SO42−, Na+, NH4+, Mg2+ and Ca2+ associated with fine and coarse particles at telephone company switching equipment locations in Wichita (Kansas), Lubbock (Texas) and Newark (New Jersey). Using the results from these studies, a methodology was developed for predicting the average indoor surface accumulation rates of ionic substances from their outdoor concentrations.In this paper we report new results for a site at Neenah, Wisconsin. At this site detailed data on the operational status of the air handling euipment were also obtained through a permanent monitoring system. These data and the data on ionic species have been used in mass balance model that calculates indoor concentrations from outdoor concentrations. Coupling this mass balance model with the measured deposition velocities substantially improves the earlier methodology for predicting surface accumulation rates from outdoor concentrations and enables decision makers to evaluate the effects of various manipulations in critical air handling system operating variables. Informed decisions can now be made when striking a balance between energy and indoor use and indoor air quality or equipment reliability.  相似文献   

5.
京津冀污染物跨界输送通量模拟   总被引:14,自引:1,他引:13  
安俊岭  李健  张伟  陈勇  屈玉  向伟玲 《环境科学学报》2012,32(11):2684-2692
发展了关键影响因子加权人为源分配方法(WKIF),增添了依赖于气象条件和下垫面类型的生物源,动态更新了气象场和浓度场的边界条件.然后利用WRF-CAMx模式定量给出了四季北京、天津和河北大气边界层中PM2.5、O3、CO、SO2、NO2和NO跨界输送通量和北京净输入或输出通量.结果表明WKIF方法合理反映了中小城市人为源的空间分布特征,模式重要输入参量、初值与边界条件的改进显著改善了WRF-CAMx模式对京津冀地区6个观测站点近地面NOx、O3和PM2.5浓度的模拟.北京向天津冬、春季主要通过西北方向,夏、秋季主要经过偏西方向输入NO、NO2、SO2、CO、O3、PM2.5,输送通量夏季均最小,冬季均最大,且四季北京向天津输入的CO、O3、PM2.5通量显著高于NO、NO2、SO2通量.河北的污染物冬、春季主要通过西北方向,夏季主要经由偏南方向,秋季主要途径偏西方向进入北京;四季北京向河北输入NO和NO2,但跨界输送通量小于20t·d-1;四季河北向北京输入的CO、O3、PM2.5通量远高于北京向河北输送的NO、NO2通量,明显大于北京向河北输送的SO2通量,且河北向北京输入CO、O3、PM2.5通量夏季均最小,冬季均最大;四季北京大气边界层中NO、NO2、SO2最大净输出通量小于50t.d-1,CO、O3、PM2.5净输入或输出通量分别为111~2309、567~6244、715~1778t·d-1.这些定量结果为京津冀区域污染源调控对策的制定提供了科学依据.  相似文献   

6.
A specially designed recirculating environmental chamber was constructed to study the environmental factors affecting the deposition of pollutant gases to the surface of stone and other building materials. The chamber and sample holder are designed to place samples in an aerodynamically well-defined air flow. The system is designed to permit use of radioactive 35SO2 as a tracer if necessary. A wide range of typical environmental conditions can be continuously maintained in the chamber. Wind speeds in the test section can range up to about 5 ms−1, exposing replicate samples to air flow that is uniform to within approximately 3%. Relative humidity in the chamber can be maintained to within 3%, and SO2, NO2 and O3 concentrations in the chamber air can be maintained to within 4%. Test results indicate SO2 deposition and wind speed in the chamber are closely correlated, allowing for a direct determination of the surface resistance (rc) component of the SO2 deposition velocity to various test materials. Initial studies of SO2 deposition to limestone and marble indicate the rc values are approximately 1.3 s cm−1 for fresh limestone and 34 s cm−1 for fresh marble at 75% relative humidity, 26°C and 50 ppb SO2.  相似文献   

7.
Methyl nitrate, CH3ONO2, was measured by electron capture gas chromatography (EC-GC) under conditions which allowed resolution of methyl nitrate, PAN, and several chlorinated hydrocarbons. Calibrations involved both EC-GC andNOx chemiluminescence and were in agreement with independent calibrations involving i.r. spectroscopy. The rate constant for photolysis of methyl nitrate in sunlight was< 2.3 × 10−6s−1. Detection limits of field instruments were 0.1–0.4 ppb. Some 3000 EC-GC chromatograms grams of ambient air recorded between June and December 1987, during the Southern California Air Quality Study (SCAQS) at up to nine Southern California locations yielded only seven possible, but unlikely observations of methyl nitrate. Thus, methyl nitrate was only a minor component among nitrogenous air pollutants during SCAQS. The measured CH3ONO2/PAN ratios of<0.003–0.2 during SCAQS are discussed in terms of available kinetic data for PAN unimolecular decomposition (a major source of methyl nitrate), PAN thermal decomposition and CH3ONO2 photolysis.  相似文献   

8.
Most previous O3 simulations were based only on gaseous phase photochemistry. However, some aerosol-related processes, namely, heterogeneous reactions occurring on the aerosol surface and photolysis rate alternated by aerosol radiative influence, may affect O3 photochemistry under high aerosol loads. A three-dimensional air quality model, Models-3/Community Multi-scale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution, was employed to simulate the effects of the above-mentioned processes on O3 formation under typical high O3 episodes in Beijing during summer. Five heterogeneous reactions, i.e., NO2, NO3, N2O5, HO2, and O3, were individually investigated to elucidate their effects on O3 formation. The results showed that the heterogeneous reactions significantly affected O3 formation in the urban plume. NO2 heterogeneous reaction increased O3 to 90 ppb, while HO2 heterogeneous reaction decreased O3 to 33 ppb. In addition, O3 heterogeneous loss decreased O3 to 31 ppb. The effects of NO2, NO3, and N2O5 heterogeneous reactions showed opposite O3 concentration changes between the urban and extra-urban areas because of the response of the reactions to the two types of O3 formation regimes. When the aerosol radiative influence was included, the photolysis rate decreased and O3 decreased significantly to 73 ppb O3. The two aerosol-related processes should be considered in the study of O3 formation because high aerosol concentration is a ubiquitous phenomenon that affects the urban- and regional air quality in China.  相似文献   

9.
车载激光雷达对北京地区边界层污染监测研究   总被引:7,自引:2,他引:5  
介绍了自行研制的车载差分激光雷达AML-2探测原理及技术参数,于2006-08、2006-09在不同天气因素条件下对北京西南郊榆垡地区大气边界层污染物O3、NO2、SO2进行了实时监测,对比分析了3种污染物浓度垂直分布及日变化特征.结果表明,无外来污染输送时,3种污染物在阴雨天气总体浓度较小,O3和NO2浓度随高度升高而减小,SO2浓度垂直分布少见此特征,但在近地面0.6 km左右有较强SO2污染层.南部气流输送对北京地区大气环境影响明显,2006-08-23~2006-08-25这次强污染气流输送高度约1~1.5 km,3种污染物浓度垂直分布及日变化特征受到干扰,北京榆垡地区边界层O3、NO2、SO2总体浓度明显上升.  相似文献   

10.
Daily measurements the atmospheric cocnentrations of HNO3, NO3-, NO2, SO2, SO42−, NH4+, and several trace metals were made at the University of Michigan Biological Station over a 124-day period during the 1984–1985 winter. The composition of the daily precipitation was also determined. The relative contributions of scavenged NO3 and HNO3 to the precipitation was estimated by assuming that the NO3 scavenging ratio was the same as that of trace metals with a similar particle size. Similarly, the SO42− and SO2 contributions were based on the scavenging ratios of NH4+ and trace metals. On this basis, it was determined that the event median NO3 and HNO3 scavenging ratios were 500 and 3500, respectively. HNO3 scavenging accounted for 83% of the total scavenged NO3. Scavenging of SO42− accounted for all the snow SO42− in 67% of the events. In the remaining events, some SO2 was scavenged, with a median scavenging ratio of 219. Overall, 67% of the snowfall acidity appeared to be due to HNO3 scavenging. Backward air-mass trajectories that were calculated for each event were used to determine the general source regions of the acidic species. Snow associated with air masses from the south and west accounted for 81 and 75% of the deposited NO3 and SO42−, respectively.  相似文献   

11.
As an important indoor pollutant, nitrous acid (HONO) can contribute to the concentration of indoor OH radicals by photolysis via sunlight penetrating into indoor environments, thus affecting the indoor oxidizing capability. In order to investigate the concentration of indoor HONO and its impact factors, three different indoor environments and two different locations in urban and suburban areas were selected to monitor indoor and outdoor pollutants simultaneously, including HONO, NO, NO2, nitrogen oxides (NOx), O3, and particle mass concentration. In general, the concentration of indoor HONO was higher than that outdoors. In the urban area, indoor HONO with high average concentration (7.10 ppbV) was well-correlated with the temperature. In the suburban area, the concentration of indoor HONO was only about 1-2 ppbV, and had a good correlation with indoor relative humidity. It was mainly attributed to the heterogeneous reaction of NO2 on indoor surfaces. The sunlight penetrating into indoor environments from outside had a great influence on the concentration of indoor HONO, leading to a concentration of indoor HONO close to that outdoors.  相似文献   

12.
Four popular photochemical reaction mechanisms, Caltech, CB-III, CB-XR and CB-IV, are evaluated using a major, newly available set of outdoor smog chamber data. The smog chamber experiments were carried out under conditions representative of urban air. Sixteen experiments with various temperature and initial HC/NOx ratios are used to test model performance. In general the four photochemical smog models are found to give results in good agreement with experiment, particularly at moderate temperatures (15–25°C) and HC/NOx ratios of 7–16 and when the initial organic composition included gasoline vapour, synthetic exhaust and solvents. At higher temperatures (30–45°C) and at lower HC/NOx ratios (<5) the agreement is not as good. For HC/NOx = 3.5 the CB-XR and CB-IV mechanisms underestimate the final O3 concentration by up to 82%. When solvent emissions are omitted from the initial composition the Caltech and CB-III models overestimate the final O3 concentration by up to 59%.  相似文献   

13.
As part of the Lake Michigan Ozone Study, the NOAA instrumented King Air research aircraft made a series of flights over Lake Michigan during the summers of 1990 and 1991 to characterize the atmospheric conditions prevailing during times when O3 concentrations exceeded the air quality standard. Most of the time, O3 concentrations were within the normal range (40–70 ppbv) for the location and season, but higher concentrations were measured during the afternoon flights at several isolated locations. During three afternoon flights, high O3 concentrations (> 120 ppbv) were observed along portions of the flight path; the highest 1-min average exceeded 160 ppbv. In two flights the highest O3 concentrations were observed in the lower boundary layer over the eastern portion of the flight track; in one case the high concentrations were found over the western side of the lake throughout the boundary layer. The increased O3 was accompanied by moderately increased SO2 and NOx (10–20 ppbv); outside the region of elevated O3, the SO2 and NOx were less than 2–3 ppbv. The elevated zone concentrations were related to emissions from the urban region located near the southern and southwestern shores of Lake Michigan.  相似文献   

14.
Outdoor smog chamber experiments were used to study the sensitivity of the yields of two important nitrogen-containing pollutants, nitric acid (HNO3) and peroxyacetyl nitrate (PAN) to changes in nonmethane hydrocarbon (HC) and nitrogen oxide (NOx) concentrations in Los Angeles. The experiments were conducted at two sites in the Los Angeles Basin using eight chambers filled with morning Los Angeles air on 33 days. At least one chamber was unchanged and served as a control, while the initial HC and/or NOx concentrations were changed by 25–50% in up to seven chambers to simulate O3 control strategies and to broaden the range of HC - NOx conditions studied. Empirical models that predict the maximum yields of HNO3 and PAN were used to determine the response of these pollutants to three possible ozone control strategies. All three strategies (reductions in HC, NOx or both HC and NOx) reduced PAN while only NOx reductions decreased HNO3. However, reducing NOx increased the HC reductions required to attain lower O3 levels. Thus, there is a conflict between the O3 and HNO3 control strategies.  相似文献   

15.
The long-range transport of air pollutants (LRTAP) over Europe is studied by a mathematical model based on a system of partial differential equations (PDEs). The number of PDEs is equal to the number of species studied and the model contains 35 species at present. Among the species are NO, NO2, NO3, HNO3, NH3, NH4+, O3, PAN, SO2, SO42− and may hydrocarbons. Most of the 70 chemical reactions involved in the model are nonlinear (including here many photochemical reactions).The model requires large sets of input data. Emissions of SO2, NOx, NH3 and both natural and anthropogenic volatile organic compounds (VOC) are needed in the model. The meteorological data consist of fields of wind velocities, precipitation, surface temperatures, temperatures of the boundary layer, relative humidities and cloud cover, which are read in the beginning of every 6-h interval. Both daytime and nighttime mixing heights are used in the model.Many of the species in the model vary on a diurnal basis. An investigation of the main mechanisms that determine the diurnal variation of the ozone concentrations is performed. One of the important conditions that is necessary if one wants to represent correctly the diurnal variations of the concentrations is to have access to meteorological data that vary diurnally. This is especially true for the temperature and the mixing height.The use of modern numerical algorithms (which are combined with vectorization of the most time-consuming numerical procedures) allows one to perform long-term runs with the model on several high-speed computers. Results obtained in runs with meteorological data for July 1985 and August–October 1989 are discussed. The computed concentrations and depositions are compared with measurements taken at stations located in different European countries. The agreement between calculated concentrations and measurements is reasonably good.Results obtained with several scenarios, in which the NOx emission and/or the anthropogenic VOC emissions are varied, are presented. Several main conclusions are drawn by studying the results obtained during the comparisons. Some plans for future development of the models are discussed.  相似文献   

16.
针对源清单中部分点源烟囱参数缺失而采用源排放模型SMOKE(Sparse Matrix Operator Kernel Emissions)默认的烟囱参数对空气质量模型模拟结果造成的不利影响,综合考虑气象观测数据、空气质量监测数据、源排放强度以及相关标准和规范对烟囱设计的要求,分别基于最大落地浓度法和基于统计方法对2009年珠三角地区源清单中缺失烟囱参数点源的烟囱参数进行了估算,并将估算烟囱参数用在WRF/SMOKE-PRD/CMAQ空气质量模型系统分析其对模型模拟的改善情况.相比于采用SMOKE默认烟囱参数,基于最大落地浓度估算烟囱参数对NO2、NOx、SO2、PM10及O3的模拟结果均具有一定改善作用,而基于统计方法估算烟囱参数仅对SO2、O3的模拟结果有所提高.结果表明,使用基于最大落地浓度法估算得到的烟囱参数更为合理,使污染物的垂直排放分配更加合理,可以应用于空气质量模型输入源清单中缺失烟囱参数点源的估算,从而一定程度上改善空气质量模型的模拟效果.  相似文献   

17.
Previous measurements of peroxyacetyl nitrate(PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NOx, etc., made at an urban site(CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 × 10 9mol/mol(0.23 × 10 9–3.51 × 10 9mol/mol) and was well correlated with that of NO2but not O3, indicating that the variations of the winter concentrations of PAN and O3in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl(PA) radical was estimated to be in the range of 0.0014 × 10 12–0.0042 × 10 12 mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.  相似文献   

18.
The concentrations and chemical composition of suspended particulate matter were measured in both the fine and total size modes inside and outside five southern California museums over summer and winter periods. The seasonally averaged indoor/outdoor ratios for particulate matter mass concentrations ranged from 0.16 to 0.96 for fine particles and from 0.06 to 0.53 for coarse particles, with the lower values observed for buildings with sophisticated ventilation systems which include filters for particulate matter removal. Museums with deliberate particle filtration systems showed indoor fine particle concentrations generally averaging less than 10 μg m−3. One museum with no environmental control system showed indoor fine particle concentrations averaging nearly 60 μg m−3 in winter and coarse particle concentrations in the 30–40 μg m−3 range. Analyses of indoor vs outdoor concentrations of major chemical species indicated that indoor sources of organic matter may exist at all sites, but that none of the other measured species appear to have major indoor sources at the museums studied. Significant fractions of the dark-colored fine elemental (black) carbon and soil dust particles present in outdoor air are able to penetrate to the indoor atmosphere of the museums studied, and may constitute a soiling hazard to works of art displayed in museums.  相似文献   

19.
This study reports the diurnal patterns in the concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and total suspended particulate matter (TSP) in the urban atmosphere of Varanasi city in India during 1989. The city was divided into five zones and three monitoring stations were selected in each zone.Ambient concentrations of NO2 and SO2 were maximum during winter but ozone and TSP concentrations were highest during summer. The measured maximum concentrations (2-h average) were 150 and 231 μg m−3 (0.078 and 0.086 ppm) for NO2 and SO2, respectively, for the winter season. Ozone and TSP concentrations reached a maximum of 160 (0.08 ppm) and 733 μg m−3, respectively, in the summer. NO2 and SO2 concentrations peaked in the morning and evening. Peak concentrations of O3 occurred in the afternoon, generally between noon and 4 p.m. Maximum concentrations of O3, NO2, SO2 and TSP were measured in zones I and II, and minimum in zone V.  相似文献   

20.
Thirty-five artists' colorants were exposed for 12 weeks, in the dark, to a mixture of photochemical oxidants including ozone (200 ppb), nitrogen dioxide (75 ppb) and peroxyacetyl nitrate (PAN, 15 ppb) at ambient temperature and humidity. Color changes were measured weekly using a reflectance color analyser and were also calculated from the 380–700 nm reflectance spectra of unexposed and oxidant-exposed colorant samples. Exposure to the oxidant mixture resulted in substantial fading for nine colorants (10–60 ΔE units) and moderate fading for three colorants (2–5 ΔE units). Increasing the air humidity from 46 to 83% resulted in a substantial increase in fading. The results are discussed in terms of oxidant-fugitiveness vs colorant chemical functionality and for their implications with respect to oxidant damage to colorants in museums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号