首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

2.
Temporal variability of soil gas composition in landfill covers   总被引:1,自引:0,他引:1  
In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO2 to CH4 were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil.  相似文献   

3.
To elucidate the influence of landfill gas (LFG) emission on environmental factors, an ecological investigation that was primarily concerned with the characteristics of vegetation, cover soil, and solid waste in the landfill was carried out. Temporal and spatial variations in vegetation diversity and coverage and their effects on reducing the emission of methane in the landfill were investigated. The results showed that both vegetation coverage and diversity increased with elapsed landfill closure time. The transition trend of the vegetation species was from perennial plant (Phragmites australis) to annual plants. Perennial vegetation was the dominant type of vegetation during the early closure period, and annual vegetation coverage increased with closure time. Vegetation preferentially appeared in areas of comparatively high depth of cover soil, which was characterized by high moisture retentiveness that enabled vegetation growth. The concentrations of methane and carbon dioxide in the cover soil significantly decreased with increasing closure time. The concentrations of methane and carbon dioxide from bare cover soil were higher than those from vegetated cover soil whereas the CO2 flux of bare cover soil was less than that of vegetated cover soil.  相似文献   

4.
The major potential problems from a landfill are biogas and leachate generated from the wastes deposited. These factors can also exert harmful effects on the growth of vegetation and influence the diversity and distribution of soil animals, either directly or indirectly. This paper describes investigations undertaken at the completed Gin Drinkers' Bay landfill, Hong Kong. The absence of plant cover at the site limited the occurrence of some common soil animals such has Diplopoda, Hemiptera, Isopoda and Isoptera. This was possibly due to the shortage of plants as shelter and the lack of organic matter as food. One area (site H), with a high level of landfill gas in the soil zone, had a lower diversity of soil animals than another area (site L) with a lower level of landfill gas. Some edaphic factors such as moisture content and concentrations of K, Na and Mg in the “contaminated” site H may also have resulted in lower numbers of species and individuals.  相似文献   

5.
The use of poplar tree systems (PTS) as evapotranspiration barriers on decommissioned landfills is gaining attention as an option for leachate management. This study involved field-testing the Simultaneous Heat and Water (SHAW) model for its ability to reliably estimate poplar transpiration, volumetric soil water content, and soil temperature at a landfill located in southern Ontario, Canada. The model was then used to estimate deep drainage and to ascertain the influence of a young PTS on the soil water balance of the landfill cover. The SHAW model tended to underestimate poplar transpiration [mean difference (MD) ranged from 0.33 to 3.55 mm on a daily total basis] and overestimate volumetric soil water content by up to 0.10 m3 m(-3). The model estimated soil temperature very well, particularly in the upper 1 m of the landfill cover (MD ranged from -0.1 to 1.6 x degrees C in this layer). The SHAW model simulations showed that deep drainage decreased appreciably with the presence of a young PTS largely through increased interception of rainfall, and that PTS have a good potential to act as effective evapotranspiration barriers in northern temperate climate zones.  相似文献   

6.
In addition to methane (CH(4)) and carbon dioxide (CO(2)), landfill gas may contain more than 200 non-methane organic compounds (NMOCs) including C(2+)-alkanes, aromatics, and halogenated hydrocarbons. Although the trace components make up less than 1% v/v of typical landfill gas, they may exert a disproportionate environmental burden. The objective of this work was to study the dynamics of CH(4) and NMOCs in the landfill cover soils overlying two types of gas collection systems: a conventional gas collection system with vertical wells and an innovative horizontal gas collection layer consisting of permeable gravel with a geomembrane above it. The 47 NMOCs quantified in the landfill gas samples included primarily alkanes (C(2)-C(10)), alkenes (C(2)-C(4)), halogenated hydrocarbons (including (hydro)chlorofluorocarbons ((H)CFCs)), and aromatic hydrocarbons (BTEXs). In general, both CH(4) and NMOC fluxes were all very small with positive and negative fluxes. The highest percentages of positive fluxes in this study (considering all quantified species) were observed at the hotspots, located mainly along cell perimeters of the conventional cell. The capacity of the cover soil for NMOC oxidation was investigated in microcosms incubated with CH(4) and oxygen (O(2)). The cover soil showed a relatively high capacity for CH(4) oxidation and simultaneous co-oxidation of the halogenated aliphatic compounds, especially at the conventional cell. Fully substituted carbons (TeCM, PCE, CFC-11, CFC-12, CFC-113, HFC-134a, and HCFC-141b) were not degraded in the presence of CH(4) and O(2). Benzene and toluene were also degraded with relative high rates. This study demonstrates that landfill soil covers show a significant potential for CH(4) oxidation and co-oxidation of NMOCs.  相似文献   

7.
A field scale trial was undertaken at a landfill site in Sydney, Australia (2004-2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system.The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.  相似文献   

8.
Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH4 collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH4 emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH4 emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH4 emissions increased to as much as 24% of the total CH4 generated, double the emissions when the permeable layer was installed. CH4 oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH4 oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH4 emissions and CH4 oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ?0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.  相似文献   

9.
In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.  相似文献   

10.
Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH(4) and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH(4) can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH(4) was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH(4) oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 degrees C.  相似文献   

11.
To make a proper evaluation of gas component movement inside a landfill site, it is important to investigate the different parameters related to gas flow. In this work gas-filled porosity, intrinsic permeability, tortuosity and equivalent pore radius were determined for various packed wastes, such as incineration ash, shredded bulky waste and shredded incombustible waste. These parameters were measured/inferred for samples packed in a column and exposed to a controlled gas flow. The effect of waste conditions, especially the moisture content, on these parameters was also investigated. The intrinsic permeability of such packed wastes was generally in the order of 10(-10) to 10(-9) m2, except for some ash that was one to two orders lower. The tortuosity of waste layer was greater than that of a particulate material and ranged between 2 and 10. The equivalent pore radius was generally in the order of 10(-4) m, which means that gas diffusion is still ordinary in such packed waste layer. The obtained results will be utilized when simulating gas flow inside a landfill site for biogas extraction or site aeration.  相似文献   

12.
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, Km, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.  相似文献   

13.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.  相似文献   

14.
Landfill cover soils oxidize a considerable fraction of the methane produced by landfilled waste. Despite many efforts this oxidation is still poorly quantified. In order to reduce the uncertainties associated with methane oxidation in landfill cover soils, a simulation model was developed that incorporates Stefan-Maxwell diffusion, methane oxidation, and methanotrophic growth. The growth model was calibrated to laboratory data from an earlier study. There was an excellent agreement between the model and the experimental data. Therefore, the model is highly applicable to laboratory column studies, but it has not been validated with field data. A sensitivity analysis showed that the model is most sensitive to the parameter expressing the maximum attainable methanotrophic activity of the soil. Temperature and soil moisture are predicted to be the environmental factors affecting the methane oxidizing capacity of a landfill cover soil the most. Once validated with field data, the model will enable a year-round estimate of the methane oxidizing capacity of a landfill cover soil.  相似文献   

15.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

16.
A simplified life cycle assessment was conducted to estimate greenhouse gas (GHG) emissions and energy production from each component of biogenic waste treated in an open dumping site, and by composting, anaerobic digestion, and incineration employed with additional options. The impact of uncertainties and sensitivities of the parameters in the treatment methods were investigated. We conducted a sensitivity analysis to identify the most sensitive parameters, and we discussed the relationship between uncertainty and sensitivity. Our results revealed that the moisture content of food waste and the biomass-derived carbon and methane concentration of the landfill gas of biogenic waste subjected to open dumping are the most sensitive parameters across all the treatment methods. The net GHG emissions from food waste treated in an open dumping site ranged over ten times (0.30 ? 3.67 Gg CO2 eq/Gg). In addition, by employing additional options for the open dumping site, including soil cover, a landfill gas collection system, shifting to a semi-aerobic condition, and energy conservation by using a gas engine, we found that the net GHG emissions could be reduced by 10, 27.9, 37.4 %, and up to 56.7 %, respectively. Shifting to a semi-aerobic system is the most effective method for reducing GHG emissions, followed by landfill gas collection.  相似文献   

17.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

18.
Legislation from developed countries indicates that planting trees on containment landfills is generally forbidden. Concerns centre on the supposition that tree roots can penetrate into and through capping materials, and will thus compromise control of water ingress into waste, and allow the escape of landfill gas. An associated anxiety is that if roots penetrate a clay cap they could cause desiccation and cracking of the clay through excessive moisture abstraction. It is also considered that trees growing on the relatively shallow soil above a landfill cap could be especially prone to uprooting. However, a review of the world literature indicates that maximum depths achieved by tree roots are usually between 1–2 m. Almost 90% of a tree's roots may be found in the upper 0.6 m of soil. Tree roots are highly sensitive to environmental conditions and their downward penetration can be restricted by a number of soil factors including compaction, poor aeration and infertility. A detailed study of these factors indicates that the materials used for capping landfill sites, such as HDPE (high density polyethylene) and compacted clays, can provide an effective barrier to downward root growth. The available information also suggests that tree roots are extremely unlikely to be a primary cause of desiccation cracking in a clay cap owing to their inability to extract more than about one-quarter of the total moisture held in a clay of the density required to ensure a permeability of 1×10−9m s−1. Trees growing on landfill sites with a rootable soil depth of at least 1.5 m should be at no greater risk of windthrow than most forest trees on undisturbed sites. Methods are available to assess the likelihood of windthrow. In any event, windthrow should not cause disruption of a cap, due to the inability of tree roots to penetrate HDPE, or mineral materials compacted to a bulk density of 1.8 g cm−3.  相似文献   

19.
A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.  相似文献   

20.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号