首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.  相似文献   

2.
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275 °C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes.  相似文献   

3.
The high potential of waste stream minimisation in the metal finishing sector justifies specific studies of Small and Medium Enterprises (SME). In this work, the minimisation options of the wastes generated in a hard chromium plating activity have been analysed. The study has been performed in a small job shop company, which works in batch mode with big pieces. A process flowsheet after connecting the unit operations and determining the process inputs (raw and secondary materials) and outputs (waste streams) has been carried out. The main properties, quantity and current management of the waste streams have been shown. The obvious lack of information has been identified and finally the waste minimisation options that could be adopted by the company have been recorded.  相似文献   

4.
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO2 emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes 14C and 12C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in 14C and reflect the 14CO2 abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying 14C content of biogenic matter, depending on the period of growth. In the present paper 14C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated 14C content of the materials investigated ranges between 98 and 135 pMC.  相似文献   

5.
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.  相似文献   

6.
The plastic components from waste mobile phones were sorted and characterized using visual, spectroscopic and thermal methods. The sustainable strength of the recovered plastics was investigated by comparing their mechanical and thermal properties with commercially used reference materials. The results revealed that the recovered polymers have significant potential to be reused. However, some properties, such as impact strength and tensile modulus, are significantly low compared to virgin materials and need further improvement. The samples were also tested for brominated flame retardants (BFRs) using gas chromatography–mass spectrometry technique, and the results indicated the absence of BFR in recovered plastics; hence, these can be processed without any risk of BFR toxicity.  相似文献   

7.
This article outlines the general design concepts and new chemistry necessary to achieve truly cost-effective management of an important part of the hazardous waste incineration system—i.e., the unit operations needed to treat wastewater generated by rotary kiln incinerators burning wastes containing halogens and heavy metals.  相似文献   

8.
The TAO model of Transformation of Added Organic materials (AOM) calibrated on AOMs and substrates of temperate areas was used to assess the transformations in soil of carbon and nitrogen forms of AOMs: raw materials, selected mixtures and composts from Ouagadougou urban wastes. AOMs were studied in terms of chemical and biochemical contents and for their C and N mineralization during incubations in a typical Ferric Lixisol of the sub-urban agriculture of Ouagadougou. The TAO model was used to predict the transformations of C (very labile, resistant and stable organic C) and N (very labile, resistant and stable organic N, produced and immobilized inorganic N) forms driven by AOM biochemical data. Without any change in calibration formulae, TAO predicted accurately the C transformations and inorganic N production of most of the tested AOMs, with a tendency to slightly overestimate C mineralization of previously well-composted materials and re-mineralization of immobilized N. Complementary adjustments using more complete data from laboratory experiments are suggested, but the model agrees with other data collected in the field and appears as a promising tool to optimise the management of urban wastes in the tropical area as well as for agro industrial organic fertilizers of the temperate zone. This application suggests ways to improve the management of urban wastes aiming to optimize agricultural yields, system sustainability and C sequestration in soil.  相似文献   

9.
This paper evaluates the potential for regional bioenergy recovery as electricity and heat by small-scale methane fermentation systems from organic waste matter generated from urban, industrial, and agricultural sectors. Biogas production functions of high-strength organic wastes are derived from data of implemented methane fermentation systems. The distributions of organic wastes from sewage, household, wholesale/retail, manufacturing, farming, and livestock activities in the Tokyo Bay region are calibrated into a disaggregated spatial database by compiling general activity statistics and emission intensity parameters using Geographic Information System (GIS). Three scenarios of organic matter circulation by co-digestion in sewage treatment plants (STPs) are designed and assessed. Surplus electricity and heat from methane fermentation systems are used for STP operations and household demand. The spatial database allows a preliminary examination for the suitability of locations for technology implementation from the aspects of bioenergy supply and balance. The results show that an additional 368,000-1,328,000MW of electricity would be generated, and 1300-3600TJ of heat could be used by households, reducing the annual emissions of CO(2) from fossil fuels by 307,000-798,000t.  相似文献   

10.
Material stocks in economic society are considered to represent a reserve for wastes and secondary resources. From the viewpoints of proper disposal and reutilization of stocked materials, accurate estimation of the amount of materials that will emerge as wastes or secondary resources in the future is important. We defined materials that have a high probability of emerging as wastes or secondary resources as “potential wastes and secondary resources” and estimated that amount for construction minerals in Japan as a case study. The following conclusions were drawn. (1) We classified materials that are input into economic society into four categories: potential wastes and secondary resources, potential dissipated materials, dissipatively used materials, and permanent structures. By clarifying the latter three non-potential wastes and secondary resources, we performed a more accurate assessment of the wastes and secondary resources that will emerge in the future. (2) The share of potential wastes and secondary resources was estimated to be about 30% of all construction minerals that have been input into and accumulated in Japanese economic society. (3) Information related to potential dissipated materials and dissipatively used materials will provide fundamental knowledge to support analyses of the environmental impacts and resource losses which these materials might generate.  相似文献   

11.
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d?1), 54.6% of total recyclable wastes (51.49 ton d?1) and 68.29% of readily recyclable wastes (41.19 ton d?1). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.  相似文献   

12.
The net calorific values and weight composition of solid waste from all the major municipalities of the island of Cyprus were measured. Representative waste samples were collected, processed and tested for energy generation over a complete year. The energy values appear to vary from city to city depending on the season. The total energy that could be recovered from the waste amounted to approximately 8.5% of the total electricity generation of the island of Cyprus.  相似文献   

13.
Progress in used tyres management in the European Union: A review   总被引:1,自引:0,他引:1  
The dynamic increase in the manufacture of rubber products, particularly those used in the automobile industry, is responsible for a vast amount of wastes, mostly in the form of used tyres, of which more than 17 million tonnes are produced globally each year. The widely differing chemical compositions and the cross-linked structures of rubber in tyres are the prime reason why they are highly resistant to biodegradation, photochemical decomposition, chemical reagents and high temperatures. The increasing numbers of used tyres therefore constitute a serious threat to the natural environment. The progress made in recent years in the management of polymer wastes has meant that used tyres are starting to be perceived as a potential source of valuable raw materials. The development of studies into their more efficient recovery and recycling, and the European Union's restrictive legal regulations regarding the management of used tyres, have led to solutions enabling this substantial stream of rubber wastes to be converted into energy or new polymer materials. In this article we present the relevant literature describing innovative organizational approaches in the management of used tyres in the European Union member countries and the possible uses of waste tyres as a source of raw materials or alternative fossil fuels.  相似文献   

14.
Life cycle analysis of several waste management scenarios for an Italian urban area was performed on the basis of different source segregation collection (SS) intensities from 0% up to 52%. Source segregated waste was recycled and or/recovered by composting. Residual waste management options were by landfilling, incineration with energy recovery or solid recovered fuel (SRF) production to substitute for coal. The increase in fuel and materials consumption due to increase in SS had negligible influence on the environmental impact of the system. Recycling operations such as incineration and SRF were always advantageous for impact reduction. There was lower impact for an SS of 52% even though the difference with the SS intensity of 35% was quite limited, about 15%. In all the configurations analyzed, the best environmental performance was achieved for the management system producing SRF by the biodrying process.  相似文献   

15.
The level of recycling for household waste is significantly higher in Hamburg than in London, yet the extent of materials recovery in both cities is well below technically achievable levels. This paper shows that the higher level of recycling in Hamburg can be accounted for by three main factors: a higher density of recycling facilities combined with the use of more sophisticated collection systems such as a dual-bin service for putrescible wastes; a unified administrative structure for waste management under direct control of an elected regional government; and finally, a system of proportional representation in local government allowing environmentalist political demands to be directly translated into public policy. Despite these differences however, both cities face difficulties with the expansion of recycling derived from the weakness of the secondary materials market, the lack of legislative control over the size and composition of the waste stream, the fiscal constraints on local government and the expense of comprehensive recycling programmes in comparison with alternative forms of waste disposal. This paper concludes that the high cost of recycling presents a fundamental political dilemma for sustainable waste management policy in developed economies.  相似文献   

16.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

17.
To achieve both high-efficiency power generation and high detoxification performance, advanced-type waste power generation plants such as pyrolysis and gas reforming plants are suggested. Further surveys on actual operational data of these plants are required in terms of reliability of the system when it is introduced to waste disposal sites. To verify the technical effectiveness of advanced-type waste power generation using the pyrolysis and gas reforming method, we evaluated 10?tons/day of municipal solid wastes (MSW) treated in a demonstration plant. A demonstration test was conducted over 100?days including 35?consecutive days of operation treating MSWs. The test results show high recycling performance and harmless nature of the plant which proves it to be an excellent waste recycling system. Major test results are as follows: (1) stabilization of waste treatment is possible with the wastes of various qualities, (2) clean gas is produced from the waste whose energy recovery ratio is approximately 40?%. (3) 99.3?% weight % of dried waste are recovered as valuable materials such as clean gas, char and metal, (4) total amount of dioxin emission to the outside of the plant is very small, down to 0.0051–0.018?μg?TEQ per ton waste.  相似文献   

18.
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.  相似文献   

19.
Journal of Material Cycles and Waste Management - In this work, food wastes (FWs) and domestic sewage sludge (DSS) were used as raw materials for energy recovery by anaerobic digestion (AD). AD was...  相似文献   

20.
This paper briefly describes waste treatment trends in Sweden and describes an example of state-of-the-art treatment in a local integrated waste treatment system (Bor?s). The focus is on treatment of household waste, to illustrate what can be done to establish a sustainable waste treatment system with high recovery of materials and energy. The various processes have resulted in a low amount of landfilled household waste, and high proportions of recovered energy and materials. Heat, electricity, vehicle fuel and fertilizers, metals and construction materials are recovered from the local waste in Bor?s, with less than 4% of domestic waste being sent to landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号