首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
MBR工艺处理高盐度废水试验   总被引:3,自引:0,他引:3  
采用MBR工艺对高盐度废水处理的影响因素进行研究。试验条件如下:污水中海水比例为50%,COD为700~800 mg/L,氨氮为80~100 mg/L,HRT为12 h,污泥浓度为7~8 g/L。试验结果表明:在高盐度条件下,采用低溶解氧(DO为1~2 mg/L),COD和氨氮的平均去除率可分别达到91.91%和91.44%;但氨氮负荷提高到0.4 kg/(m3.d)左右时,其平均去除率仅为62.47%。通过降低DO浓度和提高进水氨氮浓度可以使亚硝化率达到50%以上,但不能保持稳定的亚硝酸盐积累。  相似文献   

2.
pH控制生物膜移动床反应器完全亚硝化的研究   总被引:4,自引:3,他引:1  
接种硝化污泥以优势菌种法挂膜,在DO浓度为1.5~2.0 mg/L,温度为(30±1)℃,HRT为24 h的条件下,以pH控制启动移动床完全亚硝化生物膜反应器,并研究了氨氮负荷(NLR)和水力停留时间(HRT)对系统稳定性的影响.结果表明,在进水氨氮浓度为150 mg/L的情况下,pH控制在7.7~8.2,经过10 d驯化生物膜系统达稳定的完全亚硝化状态,氨氮转化率达96%以上,亚硝酸盐积累率高于95%;NLR(以NH4 -N计)从0.15 kg/(m3·d)提高到0.24 kg/(m3·d)基本不影响完全亚硝化的稳定性,氨氮转化率高于90%,亚硝酸盐积累率始终维持在96%左右;低NLR下,延长HRT由于过度曝气导致硝化类型改变为完全硝化,然而缩短HRT仍可恢复为亚硝化.  相似文献   

3.
亚硝化/电化学生物反硝化全自养脱氮工艺研究   总被引:6,自引:0,他引:6  
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1.  相似文献   

4.
以人工配制高氨氮低碳氮比(C/N)废水为进水,采用膜生物工艺,通过控制亚硝化池内温度为28~30℃,溶解氧浓度为0.5 mg/L,水力停留时间为12 h,pH为7.8~8.0,进水氨氮浓度为200 mg/L、CODCr为40 mg/L,在亚硝化池中成功实现了C/N为1∶5条件下废水的亚硝化。经过14 d的运行时间,污泥龄控制在100 d,在膜生物反应器(MBR反应器)中得到了稳定的亚硝酸盐氮积累。将氨氮浓度分别提高至400和800 mg/L的情况下,其亚硝化菌的耐受浓度负荷冲击能力均较强。  相似文献   

5.
《环境工程》2015,33(1):62-66
将短程硝化与生物流化床相结合,采用低碳氮比的人工合成污水进行启动,考察进水COD、氨氮、DO、p H对硝化和亚硝化过程的影响。研究表明,较短的水力停留时间(HRT)和较少的接种污泥量有利于生物膜的生长,能够成功实现生物流化床的快速启动。高进水氨氮浓度有助于反应器实现亚硝酸盐的积累,但是这种积累并不稳定。当反应器中p H为7.5~8.1,ρ(DO)为1.5~2.5 mg/L时,最大亚硝化率达到75%左右,氨氮去除率达85%以上。出水NO-2-N和NO-3-N浓度随进水COD浓度的增加而减少;当进水COD浓度为50 mg/L时,出水硝酸盐浓度急剧减少,亚硝酸盐浓度有所降低,反应器发生同步硝化反硝化脱氮现象。  相似文献   

6.
生物转盘系统中短程硝化的实现   总被引:3,自引:1,他引:2  
在生物转盘反应器接种普通好氧污泥,在进水COD浓度为300mg/L,氨氮浓度为15mg/L,pH7.5~8.0,室温条件下启动试验,挂膜成功后对盘面以表层异养菌为主的生物膜层进行亚硝酸盐氧化菌的驯化,通过不断提高进水氨氮负荷和控制较低的C/N,系统硝化反应经历了由弱→强→弱的变化,而氨氧化反应不断得到强化。64d时,当进水N/C比为3.75,COD和氨氮浓度分别为40mg/L和150mg/L,氨氮面积负荷为7.46g/m·2d,HRT=3.16h时,出水亚硝氮累积率达到56.7%,系统中实现了短程硝化反应,随着系统的稳定,亚硝氮平均累积率为80%,最高达95.8%;驯化过程中生物膜厚度由0.2cm增加到0.5cm,颜色也由浅黄色变成黄褐色,镜检发现微生物种类变少,钟虫和累枝虫等消失,膜体中间由大量的丝状体连接。  相似文献   

7.
生物膜SBR反应器中低氨氮浓度废水亚硝化启动试验研究   总被引:5,自引:4,他引:1  
为建立生物膜SBR反应器处理中低氨氮浓度废水的自养脱氮系统,采用控制DO浓度、HRT和不同生物载体填料的4组小试生物膜SBR反应器,对中低氨氮浓度废水进行了单级自养脱氮工艺亚硝化阶段的启动试验研究.结果表明:接种普通好氧活性污泥和厌氧污泥,在水温30℃±2℃,氨氮浓度60~120mg/L,DO为0.8~1.0mg/L和HRT=24h条件下,运行130d可实现稳定的亚硝化,YJZH软性组合填料更适合于微生物附着.  相似文献   

8.
低溶解氧下生物膜反应器的亚硝化研究   总被引:6,自引:2,他引:4  
采用生物膜反应器处理人工合成高氨氮废水,研究了低溶解氧(DO)条件反应器亚硝化反应的启动和稳定运行,并考察了不同DO浓度对硝化过程中亚硝态氮积累的影响。结果表明:在30±2℃,进水氨氮为300mg/L左右,当DO=2.0±0.1mg/L,亚硝态氮累积率在80%以上;当DO为1.2~1.5mg/L时,亚硝态氮累积率在90%以上;当DO为2.5~2.8mg/L时,亚硝态氮累积率在50%左右。因此,反应器中通过控制DO实现稳定亚硝化是可行的。  相似文献   

9.
生物紊动床内短程硝化过程研究   总被引:1,自引:1,他引:0  
采用生物紊动床反应器(BTBR),分别研究了氨氮浓度、溶解氧浓度和有机物浓度对硝化过程的影响,以及不同条件下短程硝化的实现方法及特点。试验结果表明,通过高浓度游离氨对硝化菌选择性抑制所获得的亚硝酸盐积累是不稳定的;在0.5 ̄1.0mg/L溶解氧下,DO成为增殖的限制基质,可实现亚硝酸盐稳定的积累;当进水NH+4-N为300mg/L时,出水硝态氮中亚硝酸盐氮比例稳定在80%以上。在DO浓度为2 ̄3mg/L的条件下,有机物浓度为200m gTOC/L时对硝化作用影响不大;DO浓度为0.5 ̄1.0mg/L、TOC为100mg/L时硝化系统即受到破坏。  相似文献   

10.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

11.
移动床生物膜反应器对垃圾渗滤液短程硝化研究   总被引:2,自引:0,他引:2  
杜月  陈胜  孙德智 《环境科学》2007,28(5):1039-1043
采用好氧移动床生物膜反应器(MBBR)对经过厌氧脱碳处理的垃圾渗滤液进行了深度短程硝化研究,考察了在中温(25℃)条件下DO浓度、pH值、C/N等因素对氨氮去除效果和短程硝化效果的影响.结果表明,在进水氨氮浓度为400 mg·L-1,HRT为24 h情况下,当控制DO为2 mg·L-1、pH值在8左右和C/N小于3时,氨氮去除率能达到70%以上,亚硝酸盐氮的积累率高达90%.间歇试验证明了该生物膜反应器中亚硝化菌的数量和活性要远高于硝化菌.该移动床生物膜工艺可以选择性固定和积累氨氧化细菌,从而实现较高的氨氮去除率和稳定的亚硝酸盐氮积累率.  相似文献   

12.
SBR反应器内短程硝化系统快速启动及影响因素研究   总被引:7,自引:0,他引:7  
探讨了采用序批式反应器(SBR)快速启动自养短程硝化系统的方法,研究了溶解氧(DO)、pH、温度、外加有机碳源对自养短程消化系统的影响。以硝化污泥接种反应器(SBR),在纯自养条件下利用高浓度溶解氧1.0~1.6mg/L和中温(35±1)℃达到亚硝酸氮的快速积累。结果表明,在进水氨氮浓度为280~300mg/L,HRT为12h,控制pH值为7.5~8.5、温度在(28±1)℃、溶解氧浓度为0.8~1.2mg/L条件下,氨氮去除率达到90%以上,亚硝酸氮积累率高达95%。试验证明投加有机碳源(COD)50mg/L左右时,不会对短程硝化系统产生影响,且能实现较高氨氮去除率和稳定的亚硝酸氮积累率。  相似文献   

13.
低C/N比条件下亚硝化颗粒污泥的培养及成因分析   总被引:7,自引:3,他引:4  
利用柱形SBR反应器,以自配低C/N比废水为基质,以普通活性污泥为种泥,通过逐步缩短沉降时间和提升进水负荷培养亚硝化颗粒污泥,并对该过程进行考察.结果表明:系统运行40 d后,获得成熟的亚硝化颗粒污泥,颗粒污泥颜色为黄色,平均沉降速率达60.8 m·h-1,其中粒径大于0.45 mm的约占总数的96%;出水中亚硝酸盐累积率稳定在75% ~ 80%,亚硝酸盐累积速率达0.6~0.8 kg·m-3·d-1;DO、温度和SRT都不是导致亚硝酸盐积累的关键因素,高浓度FA是造成本研究亚硝化成功实现的主要原因;颗粒污泥SBR的单周期反应过程可依次划分为COD迅速降解阶段、第一过渡阶段、氨氮去除优势阶段、第二过渡阶段和饥饿阶段5部分;另外,研究中还发现进水COD对颗粒污泥的形成和亚硝化过程的实现具有重要贡献.  相似文献   

14.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   

15.
研究了A/DAT-IAT生物脱氮工艺在低溶解氧浓度下,处理高氨氮、低碳氮比工业废水时,去除氨氮过程中亚硝酸盐积累的情况。结果表明,系统在低DO浓度下有效去除氨氮的同时,能够实现长期稳定的亚硝酸盐积累,并且没有发生污泥膨胀。在试验的稳定运行阶段,当系统运行正常,DO=1·0mg/L时,DAT池亚硝化率(NO2--N/NOX--N)平均可达82·1%,氨氮去除率>95%,污泥的沉降性能一直良好,SVI值处于90~125mL/g范围内。  相似文献   

16.
SBR亚硝化快速启动过程中影响因子研究   总被引:10,自引:5,他引:5  
李冬  陶晓晓  李占  王俊安  张杰 《环境科学》2011,32(8):2317-2322
在低DO条件下对SBR反应器实现快速亚硝化的途径及影响因素进行研究.控制反应器主要参数为:DO 0.15~0.40mg/L,pH值7.52~8.30,温度22.3~27.1℃,曝气时间为8 h.通过高、低氨氮浓度(245.28 mg/L与58.08 mg/L)交替进水的方式,经过57个周期(36 d)的稳定运行成功实现...  相似文献   

17.
长期储存亚硝化颗粒污泥的活化及菌群结构变化   总被引:2,自引:0,他引:2  
采用无机人工配水,通过逐级提高进水氨氮负荷(0.32~0.64kg/(m3·d))和设定合适的初始游离氨浓度(3.7~7.2mg/L),在SBR反应器中对常温(24~29℃)下储存1a的亚硝化颗粒污泥(NGS)进行了活化,并使用Miseq高通量测序技术分析了污泥中微生物多样性的变化情况.结果表明,NGS的亚硝化性能可在短时间内恢复.运行8d后,反应器的氨氮去除率达到95%以上,亚硝态氮累积率超过了80%,但污泥粒径持续减小,胞外聚合物(EPS)含量明显降低.活化至第20d,NGS的氨氮比去除速率和亚硝态氮比累积速率分别达到24.6mg/(gVSS·h)、23.8mg/(gVSS·h),平均粒径稳定在0.5mm左右.在活化期间,绝大部分厌氧、异养菌属被洗脱,污泥的微生物多样性显著降低.Nitrosomonas等氨氧化菌的相对丰度由活化前的1%上升至约58%,同时,Nitrospira等硝化菌的生长受到了选择性抑制.这意味着即使经历长期的常温储存,NGS仍可作为SBR的接种污泥,实现反应器的快速启动.  相似文献   

18.
常温低氨氮SBR亚硝化启动策略研究   总被引:4,自引:0,他引:4       下载免费PDF全文
分析了不同接种污泥下,不同启动策略以及不同水质下SBR反应器亚硝化的启动.研究发现,控制低溶解氧(DO为0.30mg/L)条件,接种具有一定亚硝化效果的污泥,能在短时间内实现亚硝化的启动;而接种全程硝化污泥在29d(58个周期)的培养中都未出现亚硝酸盐的积累.而通过高、低溶解氧交替培养的模式,接种全程硝化污泥的反应器也能在27d(54个周期)内达到60%以上的亚硝化率.接种全程硝化污泥,控制低溶解氧(DO为0.30mg/L),用不同C/N的水质驯化污泥.其中使用C/N为0.40~0.93的A/O生物除磷工艺二级出水作为进水的反应器在32个周期的培养中出水未出现亚硝酸盐的积累;而使用C/N比在3.50~5.34范围内的小区化粪池水能实现亚硝化的快速启动.  相似文献   

19.
曝停时间比对间歇曝气SBR短程硝化的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
常温条件下(20~25℃),以生活污水为研究对象,采用间歇曝气序批式反应器1#、2#、3#,研究了不同曝停时间比(3:1、3:2、3:3)对亚硝酸盐氮积累、亚硝化稳定性、污染物去除效果及污泥沉降性能的影响.结果表明,在一定范围内,单元停曝时间所占比例越大,即曝停时间比越小越有利于亚硝酸盐氮的积累,启动速度越快,三者分别经35,30,29d实现了亚硝化的启动;稳定运行阶段,三者的氨氮容积去除负荷分别为0.57,0.48,0.40d-1,曝停时间比越小,则氨氮去除负荷越小,COD去除效果没有明显区别;1#运行至第82d时,亚硝化率呈现逐渐下降的趋势,2#、3#仍能稳定运行,因此曝停时间比越小,越有利于抑制NOB的增殖,维持亚硝化的稳定,且污泥沉降性能越好,越有利于抑制丝状菌污泥膨胀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号