首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Lasioglossum laevissimum was studied in Calgary, Alberta, where it is eusocial with one worker brood. Estimates of relatedness were obtained among various categories of nestmate based upon four polymorphic enzyme loci, two of which exhibited significant levels of linkage disequilibrium. Relatedness estimates among workers and among reproductive brood females were very close to the expected 0.75 value that obtains when nests are headed by one, singly mated queen. However, relatedness between workers and the reproductive brood females they reared was significantly lower than 0.75. A low frequency of orphaning with subsequent monopolisation of oviposition by one worker brood female in orphaned nests may explain these results. Workers were significantly more and queens significantly less closely related to male reproductives than expected if all males were to have resulted from queen-laid eggs. Orphaning and worker-produced males contribute to this result. The sex investment ratio was 1:2.2 in favour of females, in excellent agreement with the predictions based upon relative relatednesses between workers and reproductive brood males and females. Adaptive intercolony variation in investment ratios was detected: the sex ratio was more heavily female-biased in nests in which the relative relatedness asymmetry between workers and reproductive brood was more female-biased. The study species is the most weakly eusocial hymenopteran for which relatedness estimates and sex ratio data are available. With high relatedness among nestmates and a strongly female-biased sex ratio, this study suggests the importance of indirect fitness contributions in the early stages of social evolution. Correspondence to: L. Packer  相似文献   

2.
Summary The genetic and social structures of polygyne and monogyne forms of the fire ant, Solenopsis invicta, are investigated in a comparative manner using allozyme data from two polymorphic loci. Foundress queens of the monogyne form are signly inseminated and appear to produce all males present in the colony during the major summer mating flights. The average regression coefficient of relatedness (b) among female nestmates of the monogyne form is 0.714 (Fig. 2), statistically indistinguishable from the pedigree coefficient of relatedness (G) of 0.75. We suggest that the evolution of obligate worker sterility in Solenopsis is associated with this high relatedness between workers and the queens they rear. Functional queens in polygyne nests also are singly inseminated and are no more closely related to nestmate queens than to other queens (within-nest b=0). Within-nest relatedness of workers in the polygyne population is similarly low (Fig. 2). Both the monogyne and polygyne populations from northcentral Georgia are in Hardy-Weinberg equilibrium at both allozyme loci and we found no evidence of significant population subdividion or inbreeding in the polygyne population. These results do not support the view that kin selection has promoted the evolution of polygyny in North American S. invicta. Rather, mutualism appears to be the most likely selective factor mediating queen associations inthis ant.  相似文献   

3.
Summary Kin selection, acting through high levels of relatedness, may be an important promoter in the evolution of nest sharing. Cerceris antipodes is a sphecid wasp that shares nests in contrast to the majority of sphecids where only one female occupies a nest. Nest sharing results from females remaining in their natal nests and females moving to already occupied nests. Average relatedness among nestmates of C. antipodes was calculated from allele frequencies of phosphoglucomutase to determine whether nests were usually shared by close relatives. Relatedness among nestmates was high (0.5 to 0.6) at one aggregation in two consecutive years. Preferential association of relatives away from the natal nest can be inferred from these high values combined with the frequency of nest switching observed. Estimates of relatedness were lower (about 0.3) and associated with large standard errors at 3 other aggregations. Inbreeding and relatedness between neighbouring nests were only significant at the aggregation with the fewest females. This may be a result of the small effective population size. The levels of relatedness observed are consistent with kin selection through relatedness being an important factor in the evolution of nest sharing.  相似文献   

4.
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis. Received: 2 October 1997 / Accepted after revision: 10 January 1998  相似文献   

5.
Knowledge of the sociogenetic organization determining the kin structure of social insect colonies is the basis for understanding the evolution of insect sociality. Kin structure is determined by the number and relatedness of queens and males reproducing in the colonies, and partitioning of reproduction among them. This study shows extreme flexibility in these traits in the facultatively polygynous red ant Myrmica rubra. Relatedness among worker nestmates varied from 0 to 0.82. The most important reason for this variation was the extensive variation in the queen number among populations. Most populations were moderately or highly polygynous resulting in low relatedness among worker nestmates, but effectively monogynous populations were also found. Polygynous populations also often tend to be polydomous, which is another reason for low relatedness. Coexisting queens were positively related in two populations out of five and relatedness was usually similar among workers in the same colonies. Due to the polydomous colony organization and short life span of queens, it was not possible to conclusively determine the importance of unequal reproduction among coexisting queens, but it did not seem to be important in determining the relatedness among worker nestmates. The estimates of the mating frequency by queens remained ambiguous, which may be due to variation among populations. In some populations relatedness among worker nestmates was high, suggesting monogyny and single mating by queens, but in single-queen laboratory nests relatedness among the worker offspring was lower, suggesting that multiple mating was common. The data on males were sparse, but indicated sperm precedence and no relatedness among males breeding in the same colony. A comparison of social organizations and habitat requirements of M. rubra and closely related M. ruginodis suggested that habitat longevity and patchiness may be important ecological factors promoting polygyny in Myrmica. Received: 15 May 1995/Accepted after revision: 17 October 1995  相似文献   

6.
The impact of intranest relatedness on nestmate recognition was tested in a population of polydomous and monodomous nests of the mound-building ant Formica pratensis. Nestmate recognition was evaluated by testing aggression levels between 37 pairs of nests (n=206 tests). Workers from donor colonies were placed on the mounds of recipient nests to score aggressive interactions among workers. A total of 555 workers from 27 nests were genotyped using four DNA microsatellites. The genetic and spatial distances of nests were positively correlated, indicating budding and/or fissioning as spread mechanisms. Monodomous and polydomous nests did not show different aggression levels. Aggression behavior between nests was positively correlated with both spatial distance and intranest relatedness of recipient colonies, but not with genetic distance or intranest relatedness of donor colonies. Multiple regression analysis revealed a stronger effect of spatial distance than of genetics on aggression behavior in this study, indicating that the relative importance of environment and genetics can be variable in F. pratensis. Nevertheless, the positive regression between intranest relatedness of recipient colonies and aggression in the multiple analysis supports earlier results that nestmate recognition is genetically influenced in F. pratensis and further indicates that foreign label rejection most likely explains our data.  相似文献   

7.
I use 10 years of data from a long-term study of lek-mating long-tailed manakins to relate the social network among males to their spatial and genetic structure. Previously, I showed that the network connectivity of young males predicts their future success. Here, I ask whether kinship might shape the organization of this “young-boy network”. Not surprisingly, males that were more socially distant (linked by longer network paths) were affiliated with perch zones (lek arenas) that were further apart. Relatedness (r) among males within the network decreased as social distance increased, as might be expected under kin selection. Nevertheless, any role for indirect inclusive fitness benefits is refuted by the slightly negative mean relatedness among males at all social distances within the network (overall mean r = −0.06). That is, relatedness ranged from slightly negative (−0.04) to more negative (−0.2). In contrast, relatedness in dyads for which at least one of the males was outside the social network (involving at least one blood-sampled male not documented to have interacted with other banded males) was slightly above the random expectation (mean r = 0.05). The slight variations around r = 0 among males of different categories likely reflect dispersal dynamics, rather than any influence of kinship on social organization. Relatedness did not covary with the age difference between males. These results, together with previous results for lack of relatedness between alpha and beta male partners, refute any role for kin selection in the evolution of cooperative display in this lek-mating system. This contribution is part of the special issue “Social Networks: new perspectives” (Guest Editors: J. Krause, D. Lusseau, and R. James).  相似文献   

8.
Under favorable conditions, the mound-building ant Formica exsecta may form polydomous colonies and can establish large nest aggregations. The lack of worker aggression towards nonnestmate conspecifics is a typical behavioral feature in such social organization, allowing for a free flux of individuals among nests. However, this mutual worker toleration may vary over the seasons and on spatial scales. We studied spatio-temporal variation of worker–worker aggression within and among nests of a polydomous F. exsecta population. In addition, we determined inter- and intracolony genetic relatedness by microsatellite DNA genotyping and assessed its effect on nestmate recognition. We found significant differences in the frequency of worker exchange among nests between spring, summer, and autumn. Moreover, we found significant seasonal variation in the level of aggression among workers of different nests. Aggression levels significantly correlated with spatial distance between nests in spring, but neither in summer nor in autumn. Multiple regression analysis revealed a stronger effect of spatial distances rather than genetic relatedness on aggressive behavior. Because nestmate discrimination disappeared over the season, the higher aggression in spring is most plausibly explained by cue intermixing during hibernation.  相似文献   

9.
Loss of aggression between social groups can have far-reaching effects on the structure of societies and populations. We tested whether variation in the genetic structure of colonies of the termite Nasutitermes corniger affects the probability of aggression toward non-nestmates and the ability of unrelated colonies to fuse. We determined the genotypes of workers and soldiers from 120 colonies at seven polymorphic microsatellite loci. Twenty-seven colonies contained offspring of multiple founding queens or kings, yielding an average within-colony relatedness of 0.33. Genotypes in the remaining 93 colonies were consistent with reproduction by a single queen and king or their progeny, with an average within-colony relatedness of 0.51. In standardized assays, the probability of aggression between workers and soldiers from different colonies was an increasing function of within-colony relatedness. The probability of aggression was not affected significantly by the degree of relatedness between colonies, which was near zero in all cases, or by whether the colonies were neighbors. To test whether these assays of aggression predict the potential for colony fusion in the field, we transplanted selected nests to new locations. Workers and soldiers from colonies that were mutually tolerant in laboratory assays joined their nests without fighting, but workers and soldiers that were mutually aggressive in the assays initiated massive battles. These results suggest that the presence of multiple unrelated queens or kings promotes recognition errors, which can lead to the formation of more complex colony structures.  相似文献   

10.
Summary There is high within-nest relatedness for functional queens (with corpora lutea), nonfunctional queens (without corpora lutea), and workers in polygynous nests of Leptothorax acervorum. The high functional queen relatedness suggests that young mated queens are adopted back to their mother nest. Functional queen relatedness does not change with the number of queens present in the nest, suggesting that the number of generations of queens, on average two to three, is rather stable. Worker relatedness decreases with increasing number of functional queens per nest (Tables 5, 6). The number of queens contributing offspring to the nest (mothers), estimated from worker and functional queen relatedness, is lower than the number of functional queens, particularly in highly polygynous nests. Estimates of number of mothers in monogynous nests indicate that these nests previously were polygynous (Table 7). There is no correlation between nest relatedness and distance between nests, and budding-off, if present, thus appears to be a rare mode of nest founding (Table 8). There are no indications of inbreeding in the two populations studied since the frequency of heterozygotes is as high as expected from random mating (Table 4). Most likely, polygyny is the rule in L. acervorum and serves to secure the presence of queens in the nest.  相似文献   

11.
The ability to discriminate degrees of relatedness may be expected to evolve if it allows unreciprocated altruism to be preferentially directed towards kin (Hamilton in J Theor Biol 7:1–16, 1964). We explored the possibility of kin recognition in the primitively eusocial halictid bee Lasioglossum malachurum by investigating the reliability of worker odour cues that can be perceived by workers to act as indicators of either nest membership or kinship. Cuticular and Dufour’s gland compounds varied significantly among colonies of L. malachurum, providing the potential for nestmate discrimination. A significant, though weak, negative correlation between chemical distance and genetic relatedness (r = −0.055, p < 0.001) suggests a genetic component to variation in cuticular bouquet, but odour cues were not informative enough to discriminate between different degrees of relatedness within nests. This pattern of variation was similar for Dufour’s gland bouquets. The presence of unrelated individuals within nests that are not chemically different from their nestmates suggests that the discrimination system of L. malachurum is prone to acceptance errors. Compounds produced by colony members are likely combined to generate a gestalt colony chemical signature such that all nestmates have a similar smell. The correlation between odour cues and nest membership was greater for perceived compounds than for non-perceived compounds, suggesting that variability in perceived compounds is a result of positive selection for nestmate recognition despite potentially stabilising selection to reduce variability in odour differences and thereby to reduce costs derived from excessive intracolony nepotistic behaviour.  相似文献   

12.
Relatedness and inbreeding coefficients were estimated for Oncothrips tepperi and O. habrus, two species of eusocial gall-forming thrips, using data from two microsatellite loci. Relatedness between sets of individuals (sexes and castes) for O. tepperi ranged from 0.5 to 0.85 and for O. habrus estimates were centered around 0.5. Multiple mating in O. habrus was implicated in lowering relatedness within a gall. We estimated the inbreeding coefficient to be 0.38 for both species, the highest estimates known for eusocial insects. Our findings imply that high relatedness and inbreeding are important for the evolution and form of social behavior in Australian gall-forming Thysanoptera. Received: 14 November 1997 / Accepted after revision: 14 March 1998  相似文献   

13.
Summary In social insects, there is often a brief period following eclosion when workers are highly acceptable in alien nests of their own or other species. This study tested for such an acceptance period in the facultatively polygynous ant, Leptothorax curvispinosus, and compared the duration and effectiveness of this period for conspecific and heterospecific introductions. Workers that eclosed and aged for 1–70 h or 30 days in isolation were introduced into either their parental nests (n=24), alien conspecific nests (n=265), or nests of the closely related and biologically similar species, L. longispinosus (n=341). In alien conspecific nests, acceptance was maximal for workers aged 1–12 h at introduction (67.7% not attacked, 75.8% adopted) and gradually decreased until the level of nonaggression (after 60 h) and adoption (after 36 h) were not significantly different from 30-day-old workers (5.9% not attacked, 17.6% adopted). In heterospecific nests, acceptance was maximal for workers aged 1–4 h at introduction (34.8% not attacked, 37.0% adopted) but thereafter was not significantly different from 30-day-old workers (5.6% not attacked, 8.3% adopted). In their parental nests, workers were generally accepted regardless of age (4–56 h posteclosion, 95.8% not attacked, 100% adopted); a result that is consistent with previous research on older workers (38–157 days posteclosion). This study demonstrates an acceptance period that is more effective and of longer duration within than between these species but that, under uniform laboratory conditions, is often not necessary for the integration of workers into their parental colonies. Within colonies, acceptance periods might only be important during relatively brief periods in a colony's life history when eclosing workers produce genetically based nestmate recongition cues that are not already represented in the colony and must be learned by colony members (e.g., during early colony growth or following adoption of queens), or when young workers must acquire environmentally based nestmate recognition cues to achieve and maintain acceptability.  相似文献   

14.
Establishment of new groups is an important step in the life history of a social species. Fissioning is a common mode not only in group proliferation, for instance, as a regular part of the life cycle in the honey bee, but also when multiple females reproduce in the same group, as in multiple-queen ant societies. We studied the genetic consequences of fissioning in the ant Proformica longiseta, based on DNA microsatellites. In P. longiseta, new nests arise by fissioning from the old ones when they grow large, and the daughter nests consist of workers and queens or queen pupae but never both. Our results show that fissioning is not entirely random with respect to kinship. Workers tend to segregate along kin lines, but only when the initial relatedness in the parental nests is low. Workers in a daughter nest also tend to be associated with closely related adult queens, whereas such an association is not detected between workers and queen pupae. Most queens and workers are carried to the daughter nest by a specialized group of transporting workers, suggesting active kin discrimination by them. Fissioning pattern in P. longiseta is different from that found in other social insects with regular fission (e.g., the honey bee, swarm-founding wasps), where no fissioning along kin lines has been found. It does, however, resemble fissioning in another group of social animals: primates.  相似文献   

15.
Summary Contrary to the expectations of kin selection theory, intracolony relatedness in eusocial insects is often low. We examined the idea that associations of low relatedness (high genetic variability) may be advantageous because of negative frequency-dependent selection on common host phenotypes by rapidly evolving parasites and pathogens. Using the natural host-parasite system of the bumble bee Bombus terrestris and its intestinal trypanosome Crithidia bombi, we investigated the transmission properties of parasites in host groups. Within naturally infested nests and in artificially constructed groups of workers, prevalence of infestation increased with time of exposure (Table 1). The susceptibility of isolated groups of workers to the parasites to which they were exposed differed with identity and natural infestation of their nest of origin (Table 2). In addition, those workers that were related to the individual introducing an infection to their group were more likely to become infested than were unrelated workers (Table 3). Although the bumble bee workers in experimental boxes appeared to differ in behavior toward kin and non-kin, making more physical contacts with kin, we found no discernible relationship between number of physical contacts and prevalence of infestation in a group. Therefore, we conclude that differences in parasite transmission reflected interactions among different host and parasite phenotypes. This system thus demonstrates the factors necessary for negative frequency-dependent selection by parasites on common host phenotypes - variability for susceptibility and infectiousness in host and parasite populations and similarity for these traits among related individuals. If, as we show here, high genetic relatedness within groups enhances parasite transmission, kin directed altruism may increase the risk of contracting parasites and infectious diseases. Therefore, parasites and pathogens may be an important force moderating the genetic structure of social groups. Offprint requests to: J.A. Shykoff at the present address  相似文献   

16.
Summary Parasites of social insect workers can be transmitted within the colony to other, related host individuals or, alternatively, to unrelated workers of other colonies. Division of labour affects the probability of transmission, as young individuals often work inside the nest whereas older ones often leave the nest to forage. Therefore, the relative probabilities of transmission within-vs. between-nests is also affected by the delay between host infection and the shedding of propagules, i.e. the latent period of the parasite strain. We therefore hypothesized that strains of the flagellate parasite Crithidia bombi (Trypanosomatidae, Zoomastigophorea) infecting workers of the bumble bee Bombus terrestris (Hymenoptera, Apidae) could differ in their delays and coexist in a population. This would be the case if strains that are shed after a short time delay were more efficiently transmitted to other colony members, whereas strains with long delays were more efficiently transmitted to non-related workers in the population. We tested this hypothesis by experimentally varying time delay and by allowing transmission to either sister workers from the same nest or unrelated workers from other nests. Transmission of C. bombi was measured as the number of parasitic cells shed by the exposed workers after a standard period. The results showed that relatedness as such had no effect, but that delay and nest identity were highly significant effects to explain variation in transmission success. There was a significant interaction between nest identity and delay, such that bees of some colonies acted as efficient transmitters for C. bombi under short delays and vice versa. We discuss how division of labour may affect parasitism in social insects and, vice versa, how division of labour may be under selection from the effects of parasitism, using available evidence from the literature. Correspondence to: P. Schmid-Hempel  相似文献   

17.
Queen mating frequency was studied in the European hornet, Vespa crabro, by analyzing four DNA microsatellite loci in 20 workers from each of 14 nests. Queens were found to be predominantly singly mated (9/14), although double (4/14) and triple mating (1/14) also occurred. For most multiply mated queens, paternity was significantly biased with the majority male fathering on average 80% of the female offspring. The population-wide effective mating frequency was therefore low (1.11), and sister-sister relatedness high (0.701 ± 0.023 SE). Low effective mating frequency in Vespa, in combination with data from other vespines, suggests that high paternity frequency is derived in the group. Some problems with the non-detection of fathers, where the queen was not sampled or shared alleles with males, are analyzed. Received: 16 November 1998 / Received in revised form: 29 March 1999 / Accepted: 12 April 1999  相似文献   

18.
We used polymorphic microsatellite markers to study patterns of queen and worker reproduction in annual nests of the wasp Vespula germanica in its introduced range in Australia. We found that queens were typically polyandrous (at least 85.4% mated multiply), with the minimum number of male mates ranging from 1 to 7. Calculations based on nestmate worker relatedness (r=0.46) yielded an estimate of effective queen mating frequency of 2.35. Queens were unrelated to their mates (r=-0.01), indicating that mating occurred at random within Australian V. germanica populations. In addition, the distribution of the minimum number of male mates of queens followed a Poisson distribution. This result suggested that the probability of a queen remating was not affected by previous copulations. We also discovered that mates of polyandrous queens contributed unequally to progeny production leading to significant male reproductive skew within nests. Analyses of nestmate male genotypes revealed that queens usually produced most or all males. However, workers were responsible for the production of many males in a few nests, and, in contrast to theoretical expectations, two of these nests were apparently queenright.  相似文献   

19.
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move freely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests. Received: 8 February 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

20.
Gnamptogenys striatula is a polygynous ant species, in which all workers are potentially able to mate. The reproductive status, relatedness and pedigree relationships among nestmate queens and winged females in a Brazilian population were investigated. We collected all the sexual females of 12 colonies (2–44 queens per colony, plus 2–18 winged females in 3 colonies). Dissections revealed that 98% of the queens were inseminated and that the queens in the most polygynous colonies did not lay equal numbers of eggs. The sexual females and a sample of the population were genotyped using eight microsatellite markers. Relatedness among nestmate queens was among the highest recorded to date (0.65±0.25), and tests of pedigree relationship showed that they were likely to be full-sisters, and sometimes cousins. Mated winged females were always full-sisters, the estimated genetically effective queen numbers were low and tests of pedigree relationship showed that only a few queens in the colony could be the mothers. These results suggest that the high queen-queen relatedness in polygynous colonies of G. striatula is maintained by an unusual mechanism: winged females are mostly produced by only one or a few queens, and these groups of full-sisters are recruited back into their original nest after mating. Received: 26 November 1999 / Revised: 7 September 2000 / Accepted: 7 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号