首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

2.
This paper presents the design and performance of a compact dilution sampler (CDS) for characterizing fine particle emissions from stationary sources. The sampler is described, along with the methodology adopted for its use. Dilution sampling has a number of advantages, including source emissions that are measured under conditions simulating stack gas entry and mixing in the ambient atmosphere. This is particularly important for characterizing the semivolatile species in effluents as a part of particulate emissions. The CDS characteristics and performance are given, along with sampling methodology. The CDS was compared with a reference dilution sampler. The results indicate that the two designs are comparable for tests on gas-fired units and a diesel electrical generator. The performance data indicate that lower detection limits can be achieved relative to current regulatory methods for particulate emissions. Test data for the fine particulate matter (PM2.5) emissions are provided for comparison with U.S. Environment Protection Agency (EPA) Conditional Test Method 040 for filterable particulate matter (FPM) and the EPA Method 202 for condensable particulate matter. This comparison showed important differences between methods, depending on whether a comparison is done between in situ FPM determinations or the sum of such values with condensable PM from liquid filled impingers chilled in an ice bath. These differences are interpretable in the light of semivolatile material present in the stack effluent and, in some cases, differences in detection and quantification limits. Determination of emissions from combustors using liquid fuels can be readily achieved using 1-hr sampling with the CDS. Emissions from gasfired combustors are very low, requiring careful attention to sample volumes. Sampling volumes corresponding with 6-hr operation were used for the combined mass and broad chemical speciation. Particular attention to dilution sampler operation with clean dilution air also is essential for gas-fired sources.  相似文献   

3.
Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load condition.  相似文献   

4.
A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96-98% was organic in nature. The impinger PM fraction contributed 32-38% to the total suspended particle mass and caused a factor of 2-4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times.  相似文献   

5.
Abstract

A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96–98% was organic in nature. The impinger PM fraction contributed 32–38% to the total suspended particle mass and caused a factor of 2–4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times.  相似文献   

6.
Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.  相似文献   

7.
Diluted exhaust from selected military aircraft ground-support equipment (AGE) was analyzed for particulate mass, elemental carbon (EC) and organic carbon (OC), SO4(2-), and size distributions. The experiments occurred at idle and load conditions and utilized a chassis dynamometer. The selected AGE vehicles operated on gasoline, diesel, and JP-8. These military vehicles exhibited concentrations, size distributions, and emission factors in the same range as those reported for nonmilitary vehicles. The diesel and JP-8 emission rates for PM ranged from 0.092 to 1.1 g/kg fuel. The EC contributed less and the OC contributed more to the particulate mass than reported in recent studies of vehicle emissions. Overall, the particle size distribution varied significantly with engine condition, with the number of accumulation mode particles and the count median diameter (CMD) increasing as engine load increased. The SO4(2-) analyses showed that the distribution of SO4(2-) mass mirrored the distribution of particle mass.  相似文献   

8.
ABSTRACT

Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

IMPLICATIONS There has been an increased usage of stationary diesel engines, especially backup power generators to meet the growing energy demand. Biodiesel derived from waste cooking oil has received increasing attention as an alternative fuel. However, data are only sparsely available in the literature on particulate emissions from stationary engines, fueled with blends of diesel and biodiesel. This study provides insights into the influence of waste-cooking-oil-derived biodiesel on engine performance and the particulate emissions from a stationary engine. The results of the study form a scientific basis to evaluate the impact of biodiesel emissions on the environment and human health.  相似文献   

9.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

10.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

11.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

12.
Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM < or = 10 microm in aerodynamic diameter) and PM2.5 (PM < or = 2.5 microm in aerodynamic diameter) indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment studies attempted to differentiate between contributions from gasoline and diesel motor vehicle combustion. Several source apportionment studies conducted in the United States suggested that gasoline combustion from mobile sources contributed more to ambient PM than diesel combustion. However, existing emission inventories for the United States indicated that diesels contribute more than gasoline vehicles to ambient PM concentrations. A comprehensive testing program was initiated in the Kansas City metropolitan area to measure PM emissions in the light-duty, gasoline-powered, on-road mobile source fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on vehicle PM mass emissions, with rates increasing with decreasing temperatures.  相似文献   

13.
Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in nonattainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles < or =10 and 2.5 microm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with reentrained mud/dirt carryout.  相似文献   

14.
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

15.
The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic-related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24-hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature-resolved carbon fractions also enhanced separations of carbon-rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate-rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature-resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

16.
Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NO(x)), and particle mass with aerodynamic diameter below 2.5 microm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NO(x), black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NO(x) and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NO(x) tended to cluster among the same vehicles.  相似文献   

17.
Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical emission level and the typical characteristics of two-stroke PM, as well as the possible impact on the (urban) environment, all in comparison to diesel engines. Attention was also paid to the possible problems concerning the measurement of two-stroke PM and the possibilities to add a PM requirement to the moped type approval procedure. It is demonstrated that despite the significant PM emission levels of current two wheelers, particle characteristics are different compared to diesel exhaust PM and hence following a diesel-like procedure to quantify particle emissions may not be the indicated approach. Hence, based on the experimental evidence and the foreseen technology developments, recommended steps forward are proposed, taking into account the need for efficient regulation of PM and the particularities of the specific vehicle technology.  相似文献   

18.
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.  相似文献   

19.
A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24-hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information. This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM2.5 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < or = 0.1 micron) and coarse (2.5 < or = da < or = 10 microns) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.  相似文献   

20.
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号