共查询到20条相似文献,搜索用时 0 毫秒
1.
MBR短程硝化反硝化处理高氨氮废水影响因素的研究 总被引:1,自引:0,他引:1
采用AOMBR处理模拟高氨氮废水,研究了短程硝化反硝化的效果,试验表明:在DO为1.0mg/L-1.5mg/L,系统温度为28℃,pH控制在7.5到8.6之间,进水NH3-N在598.2mg/L-701.3mg/L时,能够迅速启动反应器,在其他工况稳定不变的条件下,探讨了pH、温度和DO等对系统短程硝化稳定运行的影响,并探讨了此过程的影响机理。整个实验过程中,pH和进水氨氮的浓度能够短暂的影响亚硝酸盐的积累,但是并不能长久的使之稳定运行。在形成短程硝化的过程中膜污染逐渐加剧,经过清洗之后膜通量并不能完全恢复。 相似文献
2.
亚硝化/电化学生物反硝化全自养脱氮工艺研究 总被引:6,自引:0,他引:6
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1. 相似文献
3.
游离氨对稳定生物亚硝化的影响分析 总被引:12,自引:0,他引:12
在稳定亚硝化期亚硝化菌的竞争优势形成以后,它对FA的变化不是非常敏感,游离氨的作用主要在于提供了一个有利于亚硝化的竞争环境。稳定亚硝化期的两类硝化菌所表现出的反应活性与系统中两类硝化菌在FA抑制环境中竞争所形成的优劣态势关系紧密。将稳定亚硝化期的平均FA浓度维持在7~10mg/L左右是合适的,FA大于15mg/L以后会对亚硝化菌形成抑制。亚硝化系统中即使通过各种途径抑制硝化菌的活性,也不能使其被完全抑制或消除、洗出。当抑制作用减弱或环境条件适宜时硝化菌很快就能恢复活性,杆状絮体是良好亚硝化现象的特征污泥相。 相似文献
4.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮 总被引:13,自引:4,他引:9
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌. 相似文献
5.
6.
动力学调控实现单一反应器内亚硝化与硝化过程的互相转化 总被引:3,自引:0,他引:3
通过动力学调控在单一反应器内实现了亚硝化到硝化再到亚硝化过程的转化.在小试曝气上流式污泥床(Aerated Upflow Sludge Bed,AUSB)反应器中,在20℃、DO为2~4mg·L-1的条件下,主要通过调节反应器内的pH值调控氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)比生长速率的相对大小,以无机自配水为进水时,分别在20d和25d内将反应器的亚硝化率(出水中亚硝氮与总硝态氮之比)从95%降低至15%再恢复至95%以上,期间反应器的氨氮去除率基本维持在90%以上;当以实际高氨氮废水为进水时,同样主要通过调节反应器的pH值,分别在30d和23d内实现了反应器的亚硝化率从90%降低至10%再恢复至90%的过程. 相似文献
7.
高氨氮味精废水的亚硝化/反亚硝化脱氮研究 总被引:47,自引:2,他引:47
两段SBR法处理经稀释的味精废水有良好的有机质降解和脱氮效果,整个生物处理过程可分为碳氧化阶段和三个亚硝化/反亚硝化阶段,碳氧化阶段主要是有机质的降解和曝气吹脱除氮,随后通过亚硝化/反亚硝化反应实现生物脱氮和有机特的降解。SBRⅠ碳氧化阶段废水中有机质浓度较高,在降解过程中消耗废水中的溶解氧,竞争性抑制了亚硝化反应的发生,而亚硝化反应的形成是由于游离氨(FA)对硝酸细菌的抑制而形成的。 相似文献
8.
工业废水中,氨和氮的含量较高,而且全程硝化的工艺很难满足对这些废水的处理要求,因而,高氨氮废水的短程硝化工艺越来越被重视起来。文章将阐述高氨氮废水短程硝化的原理,并着重分析影响高氨氮废水短程硝化的各种因素。 相似文献
9.
工业废水中,氨和氮的含量较高,而且全程硝化的工艺很难满足对这些废水的处理要求,因而,高氨氮废水的短程硝化工艺越来越被重视起来.文章将阐述高氨氮废水短程硝化的原理,并着重分析影响高氨氮废水短程硝化的各种因素. 相似文献
10.
试验采用序批式反应器(SBR)处理高氨氮废水,逐步提高废水氨氮(NH+4-N)浓度到800 mg·L-1,通过控制曝气量实现了短程硝化.SBR周期试验表明,在低溶解氧和高游离氨等共同作用下,氨氧化菌(AOB)活性较低,导致AOB以亚硝酸盐氮(NO_2~--N)作为电子受体进行好氧反硝化,氧化亚氮(N_2O)释放因子为9.8%.静态试验控制初始NH_4~+-N为100 mg·L-1且改变曝气量(0.22~0.88 L·min~(-1))条件下,溶解氧浓度的增加能够提高硝化菌活性,N2O释放因子为0.51%~0.85%.当初始NH_4~+-N浓度为100 mg·L~(-1)且曝气量控制在0.66 L·min-1时,初始NO-2-N浓度为0~100 mg·L~(-1)对硝化菌活性影响较小,N2O释放因子为0.50%~0.71%.当溶解氧和游离氨浓度控制在适宜范围内,可维持AOB较高活性,抑制AOB发生好氧反硝化作用,降低N2O释放率. 相似文献
11.
溶解氧对膜生物反应器处理高氨氮废水的影响 总被引:4,自引:0,他引:4
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。 相似文献
12.
对不同进水氨氮负荷下中试膜曝气生物膜反应器(MABR)部分亚硝化性能进行了考察,旨在确定在MABR中启动、优化和维持稳定亚硝化的控制策略.在进水氨氮表面负荷由(4.9±0.4)g·m-2·d-1(以N计,下同)升至(9.1±0.5)g·m-2·d-1的过程中,MABR氨氮去除负荷可以达到(5.7±0.5)g·m-2·d-1.当进水氨氮负荷为7.4 g·m-2·d-1时,本试验MABR部分亚硝化效果最佳,亚硝化率可达96.3%.部分亚硝化的维持需要控制合适的生物膜厚度,当生物膜厚度在110~170μm之间时,MABR亚硝化率在90%左右,能够有效实现对亚硝酸盐氧化菌(NOB)的抑制和亚硝酸盐的积累.利用微生物比氧利用率(SOURAOB)来反映生物膜中氨氧化菌(AOB)的活性,发现MABR生物膜的SOURAOB可达(133.9±31.1)mg·g-1·h-1(以每g SS利用的O2量(mg)计).实时定量PCR结果也表明AOB为MABR生物膜中的优势菌群,其微生物丰度比接种污泥高出3个数量级.通过调控进水氨氮负荷和生物膜厚度,维持AOB的种群优势和高活性并同时抑制NOB的活性,可以实现MABR的稳定部分亚硝化. 相似文献
13.
14.
该文采用循环式活性污泥法(CAST)反应器,结合运行参数调控,考察了不同接种物对低碳氮比(C/N)生活污水短程硝化反硝化启动的影响。结果表明,在低温(9~13℃)、较高的溶解氧(DO 3.0~4.0 mg/L)条件下,接种常规活性污泥难以实现短程硝化反硝化。接种氨氧化菌剂,并调整DO(0.5~1.5 mg/L)、p H(8.0±0.1),第4天亚硝氮积累率达到96.69%,实现短程硝化;受进水低COD值影响,反硝化细菌难以快速繁殖,反硝化效果差,TN去除率仅为16.61%。接种反硝化菌剂,控制DO 0.5~1.5 mg/L、pH 7.8,第14天,亚硝氮积累率为88.49%,成功实现短程硝化反硝化;此外,生活污水进水波动较大,通过添加组合填料可有效提高CAST系统的抗冲击性能。该研究可为低C/N比生活污水短程硝化反硝化过程的快速启动提供参考。 相似文献
15.
16.
采用水解反硝化强化脱氮工艺,将水解酸化过程与反硝化脱氮过程相结合,研究此工艺对城镇低碳氮比废水的处理效果。实验表明,系统对COD、NH_4~+-N、TN的去除效果较为稳定,去除率分别为87.95%、99.42%、51.84%,出水COD及NH_4~+-N均优于国家一级A排放标准。当硝化液回流比为100%时,为最优工况,在进水C/N比为1时,系统对TN去除率为55.07%,去除量达45.43 mg/L;进水C/N比为0.82时,系统对TN去除率为50.45%,去除量达37.27mg/L。在C/N<1的条件下,系统仍然表现出较高的脱氮性能。对比水解池与后段A/O缺氧池的脱氮效果,水解池在反硝化脱氮能力及碳源利用率方面均优于缺氧段。 相似文献
17.
传统生物脱氮工艺对废水脱氮起到了重要作用,但仍存在许多问题.如氨氮完全硝化需消耗大量的氧,增加了动力消耗.对低C/N比低的废水,还需外加碳源,工艺流程长,占地面积大,基建投资高等,本文阐述了同步硝化反硝化、短程硝化反硝化及厌氧氨氧化等生物脱氮新技术的特点及存在的问题,并提出了今后的研究方向. 相似文献
18.
以普通的絮状污泥为接种污泥,保持COD不变,通过逐渐提高进水氨氮浓度,同时缩短沉淀时间,在SBR反应器中快速培养出具有短程硝化特性的好氧颗粒污泥。结果表明:保持ρ(COD)为300 mg/L,将进水ρ(NH+4-N)从50 mg/L逐渐提高至500 mg/L,沉淀时间从40 min逐渐缩短至2 min,并控制曝气量为200 L/h,pH值为8.0,温度为30℃,在第50天成功培养出了粒径为1.0~2.0 mm,SVI为20.1 mL/g的好氧颗粒污泥。在ρ(NH+4-N)为500 mg/L,碳氮比为3∶5时,对氨氮和COD去除率分别达到了90%和99%,亚硝态氮的积累率达到了92%,出水COD和氨氮均达到了理想的去除效果。 相似文献
19.
20.
采用聚乙烯醇(PVA)包埋硝化效能良好的活性污泥制备固定化颗粒,针对不同初始氨氮浓度的模拟废水,基于序批式间歇反应器小试实验,探讨了包埋颗粒的传质效能与氮去除过程特性.实验结果表明:颗粒体积投加率为10%,实验水温为26~30℃,pH值为7.5~8.5,反应器DO浓度为4~5mg/L的条件下,各初始氨氮浓度(50~400mg/L)稳定期包埋颗粒最大氨氮去除负荷为61.8~242.3mgN/(L-particles·h).包埋颗粒对氨氮的去除较符合零级反应动力学模型,其最大氨氧化速率(μmax)为271.40mgN/(L-particles·h),半饱和常数Ks为66.69mg/L,包埋颗粒内氨和氧的有效扩散系数(De)分别为0.467×10-9m2/s、0.279×10-9m2/s.SEM观察和比表面积测试结果表明,与新鲜颗粒相比,稳定期颗粒内部的比表面积和平均孔径增加.包埋颗粒,活性污泥,包埋颗粒与活性污泥混合3种体系对比实验表明,各初始氨氮浓度条件下混合体系可显著强化生物硝化与脱氮过程,并发生同时硝化反硝化现象. 相似文献