首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 202 毫秒
1.
为了研究不同阴极构型的微生物燃料电池(MFC)处理剩余污泥时的产电以及有机物降解情况,构建了铁氰化钾双室MFC以及生物阴极双室MFC两套系统,分析了两套系统处理剩余污泥时电压、功率密度以及有机物变化及降解情况.结果表明,处理冻融污泥时,铁氰化钾双室MFC8h达到稳定电压0.726V,运行6d时SCOD达到峰值3771.4mg/L,此时最大功率密度最高为10.3W/m3,周期结束(20d)TCOD去除率为70.3%;生物阴极双室MFC运行3d达到稳定电压0.76V并持续22d后下降,15~20d时SCOD达到峰值4538.0mg/L,并获得最高的最大功率密度13.7W/m3,周期结束(30d)去除80.6%的TCOD.相对于铁氰化钾双室MFC,生物阴极双室MFC能够更为彻底的促进污泥有机物溶出并利用其产电,对溶解性碳水化合物利用以及有机物的降解得更为彻底,同时更利于MFC系统的长期稳定运行.  相似文献   

2.
A+OSA活性污泥工艺剩余污泥减量特性研究   总被引:2,自引:1,他引:2  
高旭  卢艳华  郭劲松 《环境科学》2009,30(5):1475-1480
采用自动热量计对Anoxic (A) + oxic-settling-anaerobic(OSA)系统解偶联池进出污泥进行热值分析,以考察污泥量变动与能值变动的相互关系;通过解偶联池参数调整,了解污泥减量趋势,结合能量和物质平衡与常规水质指标测试,推测减量途径和特性.结果表明,解偶联池水力停留时间为5.56、 7.14和9 h时,整个系统污泥减量分别为1.236、 0.771和0.599 g/d.进出解偶联池的污泥含能水平发生了变化,随停留时间增加出流污泥的单位热值有高于进流污泥单位热值的趋势:5.56 h时,进出水热值没有显著差异;7.14 h时,进出水热值差值在99~113 J/g之间;9 h时,差值在191~329 J/g之间.解偶联池发生了污泥的衰减,停留时间延长,衰减程度越高.A+OSA系统污泥减量是解偶联池污泥衰减与AO主体反应区污泥产生率变化共同作用的结果.  相似文献   

3.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果.  相似文献   

4.
赵艳辉  赵阳国  郭亮 《环境科学》2016,37(3):1156-1162
为探讨微生物燃料电池(microbial fuel cell,MFC)处理经预处理后剩余污泥的可行性以及不连续供电能力,采用双室MFC,以剩余污泥热处理上清液为基质进行启动和运行,通过改变电池阴极电子受体而导致电势差变化来监测其产电的运行稳定性.结果表明,反应器以氧气作为阴极电子受体148 h后启动成功,最大输出电压0.24 V,将阴极电子受体换为铁氰化钾时,能获得0.66 V的最大输出电压和4.21 W·m~(-3)的最大功率密度.当将阴极电子受体分别替换为氧气或者开路,又转换为铁氰化钾后,电池输出功率恢复迅速,电池对有机物去除效率基本不受影响,对化学需氧量(COD)、氨氮去除效率分别达70%和80%.本研究表明,利用预处理剩余污泥进行MFC处理和产电是可行的,可获得较高的功率密度,同时MFC可以实现不连续供电.  相似文献   

5.
在室温下(17~19℃),通过接种成熟的亚硝化颗粒污泥于缺氧-好氧连续流反应器中,研究连续流亚硝化颗粒污泥的启动及稳定运行.结果表明,在启动阶段,颗粒污泥系统的亚硝态氮积累率(NAR)平均超过95%,成功启动了缺氧-好氧连续流亚硝化颗粒污泥系统.将好氧区溶解氧(DO)由(3±0.2) mg·L~(-1)提高到(4.5±0.2) mg·L~(-1),探究DO对于该连续流系统的影响.结果表明,在较高DO下,缺氧-好氧连续流亚硝化颗粒污泥系统仍能保持良好的亚硝化性能,平均NAR大于95%.另外,通过改变进水的水力停留时间(HRT),探究HRT对于该连续流系统的影响.较短的水力停留时间(8.4 h)会加快污泥颗粒在系统中的循环,使破碎的颗粒污泥不能及时重组,致使污泥颗粒沉淀性变差,造成污泥颗粒的流失.HRT增加到12.2h时,颗粒污泥系统得到了恢复,并且可以稳定运行.在运行末(166 d),氨氮去除率和NAR分别为86.7%和96.2%.  相似文献   

6.
以苯酚为燃料的微生物燃料电池产电特性   总被引:8,自引:2,他引:8  
选取城市污水处理厂的好氧和厌氧混合污泥作为接种液,构建了双极室微生物燃料电池(Microbial fuel cell, MFC),对以葡萄糖、葡萄糖和苯酚、苯酚为不同燃料的MFC进行了有机物降解和产能效果的研究.试验结果表明,以葡萄糖为单一燃料时MFC的启动时间最短,以苯酚为单一燃料时MFC启动时间最长.MFC在不同燃料来源条件下对苯酚去除率均大于85%,COD去除率超过80%.MFC的连续运行试验结果表明,在1000Ω外电阻条件下,以葡萄糖为单一燃料的MFC运行周期最长,可达400h,最大输出电压为551mV,功率密度为 121 mW·m-2(阳极);以葡萄糖和苯酚为混合燃料的MFC运行周期约200h,最大输出电压为208mV,功率密度为 16mW·m-2(阳极);而以苯酚为单一燃料的MFC运行周期仅约为100h,最大输出电压为121mV,功率密度为 6 mW·m-2(阳极).试验结果最终表明,MFC能够利用苯酚作为燃料,在实现高效降解的同时可稳定地向外输出电能,这为酚类难降解有机物的高效低耗处理提供了新的研究思路.  相似文献   

7.
微生物燃料电池(MFC)芯片因具有体积小、运行条件温和、产电稳定等优点而有可能成为一种新型的野外水环境监测系统中传感器供能方式.但目前采用纯菌种及贵重金属阳极构建的MFC芯片,不仅成本较高且纯菌种在复杂环境条件下不易存活和保持稳定.因此,本文通过采用混合菌群接种,以活性炭为阳极,构建了阳极体积为50μL的MFC芯片,发现其稳定运行最大输出电流为3.5μA,平均运行周期为8.0 h,最大输出功率约为160 nW,最大功率密度为10.2 mW·m-2.EIS分析结果表明,MFC芯片的总内阻约为35.6 kΩ,其中,阴阳极内阻占主要部分.本研究制备的MFC芯片产电性能达到了同类采用纯菌株及Au作阳极的MFC芯片的性能,表明采用低成本材料为阳极,接种混合菌液的MFC芯片是完全可行的.  相似文献   

8.
污泥热值的估算   总被引:2,自引:0,他引:2  
选择了609种包括糖、氨基酸、脂肪酸、肽、有机磷、硫化合物的有机物,其燃烧热的平均值分别为23.02MJ/kg(碳水化合物)和24.38 MJ/kg(其它含N,P和S的化合物)。根据生物化学原理,计算出污泥中有机物的燃烧热(高位热值)为23.22 MJ/kg.对几种高有机物含量的污泥进行了热值测定,结果表明,污泥中的有机物干重燃烧热为23.86MJ/kg,与估算值较接近。  相似文献   

9.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了不同处理方式的污泥(直接污泥、微波预处理污泥和酶强化水解污泥)为燃料时MFC产电特性、污泥减量化效果和能源效率.研究表明,酶强化污泥为燃料的MFC(ESMFC)产电周期最长(41d),功率密度最大(775.21mW/m2),但库仑效率(CE)仅10.58%.采用微波污泥为燃料的MFC(MSMFC)CE最高(84.6%),而产电周期(30d)和功率密度(343.41mW/m2)居中.采用直接污泥为燃料的MFC(SMFC)产电周期(15d)、功率密度(294.53mW/m2)和CE(5.8%)均最小.采用直接污泥为燃料的MFC中TCOD去除率为26.2%,VSS去除率为32.5%.采用污泥预处理手段有利于促进污泥减量化,MSMFC和ESMFC中TCOD去除率分别增加到58.5%和63.2%,VSS去除率分别增加到73.9%和77.1%.  相似文献   

10.
水力停留时间对MFC-A2/O工艺处理生活污水的影响   总被引:2,自引:1,他引:1  
在10 L的A~2/O反应器中构建微生物燃料电池(MFC)系统,以厌氧段作为阳极室去除有机物,缺氧段作为阴极室去除硝酸盐.结果发现,30 d左右可以达到最大输出电流.系统启动后进入稳定期对水力停留时间(HRT)进行优化,结果表明,当HRT=16 h时可以获得最佳出水效果,此时MFC的出水COD、总氮浓度分别比对照A~2/O反应器低14.6%和10.1%,在100Ω外阻下的输出功率密度为612 m W·m~(-3);当HRT=12 h时,产电效果最好,最大输出功率密度可以达到808 m W·m~(-3).  相似文献   

11.
构建了一种基于升流式厌氧污泥床反应器(UASB)的微生物燃料电池(MFCs),利用UASB高效去除COD能力及连续进样方式,获得稳定电能输出。考察了水力停留时间、进液方式、电极材料、离子交换膜种类、溶液离子强度等因素对于MFCs性能的影响。实验结果表明:在水力停留时间6h、连续进液、高纯石墨板电极以及均相阳离子交换膜条件下,连续运行3个月,放电功率稳定在145mW/m^2,开路电压0.78V,放电电流最高可达321mA/m^2。  相似文献   

12.
双室微生物燃料电池利用乙酸钠和淀粉产电研究   总被引:4,自引:0,他引:4  
研究了厌氧活性污泥接种的双室微生物燃料电池(Microbial Fuel Cells,MFCs) 分别供给以乙酸钠和淀粉为底物的人工配水的产电情况和有机物去除效果. 结果表明,MFCs中能量的输出与底物的种类有关,使用乙酸钠和淀粉达到的最大输出电压分别为0.43和0.39 V,最大功率密度分别为36.03和 6.32 mW/m2,简单底物的输出电压和功率密度高于复杂底物. MFCs在产电同时还可有效去除水中的有机物,288 h时以乙酸钠和淀粉为底物的MFCs中TOC的去除率分别为91.15%和83.20%,NH3-N的去除率分别为90.31%和86.20%. 扫描电镜发现,2种底物下MFCs阳极表面的微生物形态差异显著,以乙酸钠为底物的MFCs阳极表面生物相主要为杆菌和弧菌;以淀粉为底物的阳极表面主要是球菌,表明不同底物条件下MFCs中所形成的微生物优势种群也不同.   相似文献   

13.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:3,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

14.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

15.
运行微生物燃料电池减排稻田土壤甲烷的研究   总被引:3,自引:2,他引:1  
为了研究稻秆还田条件下运行微生物燃料电池(microbial fuel cells,MFCs)是否能有效减排稻田甲烷,本研究将添加质量分数0.5%稻秆的土壤装入MFCs反应器,淹水并种植水稻后运行MFCs.待水稻经历苗期、分蘗期、晒田期、灌浆期和成熟期共98 d后,停止MFCs运行.在MFCs运行过程中实时连续记录电压,每周一次采用静态箱法搜集并检测反应器的甲烷排放通量.结果表明,MFCs电流在分蘗期逐步升高并达到峰值,并且运行MFCs显著降低添加稻秆土壤在苗期和分蘗期的甲烷累积排放通量.原因可能与产电菌和产甲烷菌竞争有机底物有关.MFCs运行98 d后,水稻株高、地上和地下部分生物量,以及产量未受显著影响.本研究为稻田CH_4减排提供了一种潜在的绿色可持续的技术.  相似文献   

16.
基于浙江省诸暨市菲达宏宇污水处理厂新型氧化沟工艺的现场长期观察和试验研究,提出“水蚯蚓-微生物共生系统”的新技术原理,获得了“水蚯蚓-微生物共生系统”中污染物输入量与输出量随时间的动态变化规律,并建立了水蚯蚓作用的传递函数,从而实现水蚯蚓在污水处理和污泥降解过程中对污染物去除作用的模拟.以全耦合活性污泥模型(FCASM3)为基础平台,结合水蚯蚓作用的传递函数,最终建立了污水厂“水蚯蚓-微生物共生系统”细观机理模型(T-FCASM).利用对该污水处理厂常规水质指标测定和进水模型组分分析等试验结果,完成了对“水蚯蚓-微生物共生系统”细观机理模型(T-FCASM)的校验工作.动态模拟结果表明:T-FCASM实现了对回流污泥浓度的准确模拟;同时该模型能够对污水处理厂生物去除有机物及脱氮过程进行较准确的模拟,而对生物除磷过程的模拟,由于该污水处理厂低磷进水的原因,与实测值存在一定的偏差.  相似文献   

17.
针对一次给料稳定运行污泥热解系统制取三相产物的工艺展开分析,并基于能流图、能源回收率、能耗比等方法和衡算指标讨论该工艺的能量平衡关系。研究发现:热解产物的产率和热值高低受热解终温影响最大,反应时间次之,升温速率最小。不同工况条件下热解过程热量损失具有明显差别,热解停留时间长、升温速率低都造成输入能量、热损失增大。热解过程能量平衡分析也验证了以制取气相产物为目标的污泥热解工艺条件的回收率和能耗比最高,分别为0.94和1.73;与高产出液相油的热解过程相比,产物总能量相差不多而系统消耗的能量能够减少35%。从能源回收、节约能源角度分析,污泥低温热解制取可燃性气相产物的工艺系统具有较高应用价值。  相似文献   

18.
针对现有活性污泥检测方法过程繁琐、耗时长、检测结果滞后的局限,提出了光偏转快速检测法.在污泥负荷为0.33KgCOD/(kg MLSS·d)、水力停留时间为15h的印染废水完全混合式活性污泥系统中,投放粒径4mm、具有20μm微孔结构的聚乙烯醇(PVA)凝胶小球以负载微生物,并在小球达到稳定状态后,对其表面处因外界溶液与微生物代谢产物交换产生的浓度梯度变化,借助光斑分析仪进行光偏转检测,同时测定与光偏转检测结果相对应的15h后的出水COD及COD去除率.连续10个月的检测发现,小球中富集的主要为细菌,当进水COD由91.95mg/L增至519.4mg/L时,小球的光偏转值从229.51μm增加至299.97μm,COD去除率从16.03%提高至66.99%;当DO浓度为1.5mg/L~5mg/L时,小球光偏转值在DO=4mg/L时增至最大为309.3mg/L,对应状态下COD去除率增至最大为61.18%;在pH值为6~9时,小球光偏转值在pH=7时增至最大为293.96μm,对应状态下COD去除率也达到最大值为64.83%;当重金属Cr3+浓度增至50mg/L时,微生物活性逐渐受到抑制,小球光偏转值在Cr3+浓度为20mg/L时降至269.7μm,随后随着Cr3+浓度的增加,微生物细胞受损,胞内物质溶出,小球光偏转值有所增大,对应状态下COD去除率从52.5%持续降低至25.73%.结果表明:该方法可快速获得活性污泥代谢状态变化信息,且依据特定条件下小球光偏转值变化能够预测随后印染废水COD的去除效果.利用三维荧光光谱初步探究了微生物代谢引发光偏转的机理,发现参与微生物代谢的主要有机物为酪氨酸、芳香类蛋白及色氨酸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号