首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
In many countries where electricity generation is based on their natural resources of fossil fuels a need arises to implement new power engineering technologies that allow carbon dioxide capture. Simultaneously, efforts are made to find new energy carriers which, if fired, do not involve carbon dioxide emissions. Hydrogen is one of such fuels with this future potential which is now becoming increasingly popular. Obviously, this means that the two gases mentioned above – carbon dioxide and hydrogen – will be produced in large quantities in future, which in many cases will necessitate their transport over considerable distances. If a pipeline failure occurs, the transport of the gases may pose a serious hazard to people in the immediate vicinity of the leakage site. This paper presents an analysis of the possibility of reducing the level of risk related to pipelines transporting CO2 and H2 by means of safety valves. It is shown that for a 50 km long and a 0.4 m diameter pipeline transporting gas with the pressure of 15 MPa the individual risk level can be reduced from 1·10−4 to 6.5·10−7 for CO2 and from 1·10−6 to 6·10−10 for H2. The social risk can be diminished in similar proportions.  相似文献   

2.
CO2引起的气候变暖已成为全球最关注的环境问题之一,利用离子液体固定CO2引起了众多学者的关注。介绍了近年来离子液体吸收CO2的研究进展,包括常规离子液体和含氨基离子液体、氨基酸离子液体、聚离子液体及其他离子液体等4种功能化离子液体,并简要分析了吸收机理。综合分析了每种离子液体的吸收性能,离子液体对CO2的吸收能力均随温度上升而减小,随压力升高而增加。烷基链的增长以及含氟基团的增加有利于对CO2的吸收。功能化离子液体由于引入了功能化基团,相同条件下,其对CO2的吸收力几乎是常规离子液体的两倍。此外,将离子液体与有机溶液(特别是醇胺溶液)混合能提高离子液体对CO2的吸收能力,且能降低生产费用。最后指出了高吸收性能、低黏度、低毒以及低成本是未来离子液体的研究方向。  相似文献   

3.
Transportation safety is a key aspect of carbon capture and storage (CCS), which is a major technology used to reduce greenhouse gas emissions. Supercritical CO2 pipelines have been certified as an optimised choice for CO2 transportation. The results of this study show that the Peng–Robinson (PR) equation of state is recommended for analysis of the properties of supercritical CO2. The influence of nonpolar and polar impurities on the two-phase region and the location of the sharp discontinuity in the density are found by analysing the ternary phase equilibrium and physical parameters using the PR equation of state. A transitional area between the supercritical phase and the dense phase, where the density changes abruptly, is defined as the quasi-critical region. This study describes the functional relation between the temperature and the pressure that defines the quasi-critical line by calculating the partial derivative equations and then determines the effect of impurities on the quasi-critical region of transported CO2. Operational recommendations for pipeline transportation of flue CO2 are developed using a pipeline operated by Sinopec as an example, demonstrating the influence of impurities in flue CO2 on saturation pressure for control and prevention of fractures in CO2 pipelines.  相似文献   

4.
The flash point is one of the most important physicochemical parameters used to characterize the fire and explosion hazard for flammable liquids. The flash points of ternary miscible mixtures with different components and compositions were measured in this study. Four model input parameters, being normal boiling point, the standard enthalpy of vaporization, the average number of carbon atoms and the stoichiometric concentration of the gas phase for mixtures, were employed and calculated based on the theory of vapor–liquid equilibrium. Both multiple linear regression (MLR) and multiple nonlinear regression (MNR) methods were applied to develop prediction models for the flash points of ternary miscible mixtures. The developed predictive models were validated using data measured experimentally as well as taking data on flash points of ternairy mixtures from the literature. Results showed that the obtained average absolute error of both the MLR and the MNR model for all the datasets were within the range of experimental error of flash point measurements. It is shown that the presented models can be effectively used to predict the flash points of ternary mixtures with only some common physicochemical parameters.  相似文献   

5.
The accidental release of high-pressure carbon dioxide (CO2) can cause serious damages to both humans and pipeline equipment. Therefore, it is of great significance to have a deeper understanding about the release characteristics of high-pressure CO2 for improving the safety level of Carbon Capture and Storage (CCS) technologies. Both industrial-scale and laboratory-scale studies have been carried out to predict the release behaviors. In recent years, computational fluid dynamics (CFD) simulation has become a crucial method to study the instantaneous changes and microscopic details of the fluid behaviors. In this paper, the simulation method was employed to study the near-field structure and flow characteristics of high-pressure CO2 released from pipelines. The Peng-Robinson Equation of State (EOS) was used to compute the thermodynamic properties of high-pressure CO2, and SST k-ω model was applied to simulate the structure and physical parameters of the under-expanded jet. In addition, the multi-phase mixture model was introduced to study the phase transition. The non-equilibrium liquid/vapor transition is modeled by introducing ‘source terms’ for mass transfer and latent heat. Compared to the experimental results, the simulation results showed good agreement. Furthermore, the influences of operating conditions, including different stagnation pressure, stagnation temperature, and nozzle size, were analyzed.  相似文献   

6.
CO_2是主要的温室气体,大量CO_2的存在严重影响着人类的生存环境和生态平衡,而咪唑型离子液体具有独特的气体溶解性,在CO_2的捕集分离中有很好的应用前景。基于定量结构-性质相关性(QSPR)原理,研究了咪唑类离子液体捕集CO_2的性能与其结构参数之间的内在定量关系。应用遗传算法获得与捕集量最为密切相关的一组描述符作为输入参数,随后,分别采用多元线性回归算法及支持向量机结合粒子群优化算法建立了咪唑类离子液体捕集CO_2的性能与其描述符之间的线性和非线性模型。多元线性回归算法得出训练集和测试集的复相关系数分别为0.765和0.814,支持向量机算法得出训练集和测试集的复相关系数分别为0.987和0.933。对预测模型进行了评价验证以及稳定性分析,结果表明,2种模型具有良好的稳定性能和预测能力。  相似文献   

7.
Densities, viscosities and refractive indices of 4-diethylamino-2-butanol + water mixtures were measured over the entire concentration range of 0–1 mole fraction and temperature range from 298.15 to 343.15 K. Excess molar volumes, viscosity deviations, and molar refraction changes were calculated from the measurement results and correlated as a function of the mole fractions. Various models were used for correlation with the measured data. Out of these, the Redlich–Kister equation was the most suitable model that correlated best with experimental data. The percent absolute deviations obtained with this model were 0.03% for density, 0.88% for viscosity and 0.009% for refractive index.  相似文献   

8.
研究了玉米叶对水溶液中Pb2+的吸附性能,借助正交和单因素试验探讨各因素对吸附率的影响,利用红外光谱研究吸附机理,并采用Langmuir、Freundlich和Temkin模型对吸附数据进行拟合.结果表明:金属初始质量浓度和体系pH值是影响吸附的重要因素;玉米叶吸附铅离子的最佳pH值为5.0,金属质量浓度和吸附剂投加量最佳比值为80 mg/L:0.170 g,在25℃时玉米叶对铅离子的吸附较快,180min后达到吸附平衡;吸附数据更加符合Freundlich和Temkin等温吸附模型,由Langmuir等温吸附模型可知玉米叶最大吸附量为103.266mg/g,吉布斯自由能△Ge为负值,该过程吸热且自发进行.红外光谱分析表明,参与作用的官能团为羟基、羧基、酰胺或脂肪族C-x(x代表Cl、Br、I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号