首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon capture and storage (CCS) is a developing technology which raises a number of issues in terms of safety. CCS involves a chain of processes comprising capture of carbon dioxide, transport and injection into underground storage. In work carried out for the IEA Greenhouse Gas R&D Programme, a number of high-level hazard identification (HAZID) studies have been performed with the help of industry experts. The HAZIDs considered a carbon capture and storage chain involving capture, pipeline transport and injection. HAZID has been performed at a high-level for such a CCS chain with three types of capture technology and using pipeline transport. It is hoped that the results of the HAZID studies will be of use to those carrying out CCS projects, but should not be a substitute for them carrying out a full suite of integrated hazard management processes. A number of example hazards have been described to raise awareness of the range of hazards in a CCS process and to identify barriers which could prevent, minimise, control or mitigate CCS hazards. Bow-tie diagrams have been produced to record the information from this study and to organise it in a systematic way so that it is far less likely that contributors to and mitigators of hazards will be missed. The diagrams are available in Excel spreadsheet format so that they can be used as the starting point for development by specific CCS projects. CCS technology is still advancing and a number of knowledge gaps in terms of safety have been identified which require further development.  相似文献   

2.
The European iNTeg-Risk project is a large-scale integrated project aimed at improving the management of emerging risks related to new technologies in European industry. The project aims to build a new management paradigm for emerging risks as a set of principles supported by a common language, agreed tools and methods, and key performance indicators, all integrated into a single framework. It is using a number of Emerging Risk Representative Applications (ERRAs), or case studies, to inform the development of the framework; one of which concerns the carbon capture and storage (CCS) process.This paper describes the iNTeg-Risk CCS ERRA. Relevant hazards and properties of carbon dioxide are described and the emerging risks from CCS are discussed. Three new tools have been developed or trialled within the ERRA. These are: the DyPASI methodology for taking account of atypical (not usually identified) events during hazard identification; a methodology for including the time dimension in a risk assessment; and life-cycle approaches for risk management and communication. For CCS, the risk assessment needs to include both short-term potential accidents from capture, transport or injection, as well as very long-term risks from storage. Knowledge gaps which are generic to emerging risks are also identified.  相似文献   

3.
4.
A significant gap exists between accident scenarios as foreseen by company safety management systems and actual scenarios observed in major accidents.The mere fact that this gap exists is pointing at flawed risk assessments, is leaving hazards unmitigated, threatening worker safety, putting the environment at risk and endangering company continuity. This scoping review gathers perspectives reported in scientific literature about how to address these problems.Safety managers and regulators, attempting to reduce and eventually close this gap, not only encounter the pitfalls of poor safety studies, but also the acceptance of ‘unknown risk’ as a phenomenon, companies being numbed by inadequate process safety indicators, unsettled debates between paradigms on improving process safety, and inflexible recording systems in a dynamic industrial environment.The immediacy of the stagnating long term downward major accident rate trend in the Netherlands underlines the need to address these pitfalls. A method to identify and systematically reduce unknown risks is proposed. The main conclusion is that safety management can never be ready with hazard identification and risk assessment.  相似文献   

5.
HAZID方法浅析   总被引:3,自引:0,他引:3  
结合实际工程建设项目开展危险源辨识(HAZID)分析的情况,介绍了HAZID分析方法的广义和狭义概念内涵,主要分析步骤、每步主要工作内容、典型引导词、分析形式和特点,并将HA-ZID方法与常用的过程危险源方法、尤其是HAZOP分析方法进行了对比,以帮助读者更好地理解、运用此方法。本文拟推荐的HAZID分析方法将危险化学品行业的风险管理向前延伸到项目的早期阶段(如项目论证、可行性研究、基础工程设计或初步设计阶段),可以帮助项目组在项目建设早期认识与项目有关的健康、安全、环境(HSE)各方面问题的重要性和相关性,所辨识出的关键危险源及其危险,为下一步有重点、有目的地开展项目HSE风险管理确定了关注重点。在早期阶段进行HAZID分析,还可以有机会以最小的代价实现对项目厂址和总图布置的调整、工艺方案和设计原则的优化,可以避免后期再发现HSE隐患、必须整改时可能存在的不可实施性,或对项目费用、进度等产生严重负面影响。  相似文献   

6.
In this research, which takes the ‘12.23’ Kaixian blowout accident in Chongqing as an example, firstly the basic information of the accident, including the affected area, the accident process and the accident consequences, was described. Secondly, the development of the accident and other correlative things were researched in detail, especially the monitoring result of concentrations of toxic gases at different times. Thirdly, the blowout accident was categorized into three stages, and the causes of each stage were analyzed in depth together with the events and causal factors charting. Lastly, the profound problems exposed in the disaster were thoroughly discussed. The analysis on ‘12.23’ Kaixian blowout accident indicates that deficiencies in the proper understanding of the hazards by the crew/management as well as inadequacies in risk assessment, management, and the absence of effective countermeasures resulted in the loss of lives.  相似文献   

7.
Land use planning (LUP) around industrial sites at risk of major accidents requires the application of sound approaches in the selection of credible accident scenarios. In fact, the ‘technical’ phase of LUP is based on the identification and assessment of relevant accident scenarios. An improper choice of scenarios may critically affect both the ‘technical’ phase of risk assessment and the following ‘policy’ phase concerning decision making on land-use restrictions and/or licensing. The present study introduces a procedure aimed at the systematic identification of reference accident scenarios to be used in the gathering of technical data on potential major accidents, which is a necessary step for LUP around Seveso sites. Possible accident scenarios are generated by an improved version of the MIMAH methodology (Methodology for the Identification of Major Accident Hazards). The accident scenarios are then assessed for LUP relevance considering severity, frequency and time scale criteria. The influence of prevention and mitigation barriers is also taken into account. Two applications are used to demonstrate the proposed procedure. In both case-studies, the proposed methodology proved successful in producing consistent sets of reference scenarios.  相似文献   

8.
Background. This study is concerned with household moving works and the characteristics of occupational injuries and sick leaves in each step of the moving process. Methods. Accident data for 392 occupational accidents were categorized by the moving processes in which the accidents occurred, and possible incidents and sick leaves were assessed for each moving process and hazard factor. Results. Accidents occurring during specific moving processes showed different characteristics depending on the type of accident and agency of accidents. The most critical form in the level of risk management was falls from a height in the ‘lifting by ladder truck’ process. Incidents ranked as a ‘High’ level of risk management were in the forms of slips, being struck by objects and musculoskeletal disorders in the ‘manual materials handling’ process. Also, falls in ‘loading/unloading’, being struck by objects during ‘lifting by ladder truck’ and driving accidents in the process of ‘transport’ were ranked ‘High’. Conclusion. The findings of this study can be used to develop more effective accident prevention policy reflecting different circumstances and conditions to reduce occupational accidents in household moving works.  相似文献   

9.
The purpose of this paper is to present and discuss an accident prevention model for offshore oil and gas processing environments. The accidents that are considered in this work relate specifically to hydrocarbon release scenarios and any escalating events that follow. Using reported industry data, the elements to prevent an accident scenario are identified and placed within a conceptual model to depict the accident progression. The proposed accident model elements are represented as safety barriers designed to prevent the accident scenario from developing. The accident model is intended to be a tool for highlighting vulnerabilities of oil and gas processing operations and to provide guidance on how to minimize their hazards. These vulnerabilities are discussed by applying the 1988 Piper Alpha and the 2005 BP Texas City disaster scenarios to the model.  相似文献   

10.
The chemical process industries are characterized by the use, processing, and storage of large amounts of dangerous chemical substances and/or energy. Among different missions of chemical plants there are two very important ones, which: 1. provide a safe work environment, 2. fully protect the environment. These important missions can be achieved only by design of adequate safeguards for identified process hazards. Layer of Protection Analysis (LOPA) can successfully answer this question. This technique is a simplified process of quantitative risk assessment, using the order of magnitude categories for initiating cause frequency, consequence severity, and the likelihood of failure of independent protection layers to analyze and assess the risk of particular accident scenarios. LOPA requires application of qualitative hazard evaluation methods to identify accident scenarios, including initiating causes and appropriate safeguards. This can be well fulfilled, e.g., by HAZOP Studies or What-If Analysis. However, those techniques require extensive experience, efforts by teams of experts as well as significant time commitments, especially for complex chemical process units. In order to simplify that process, this paper presents another strategy that is a combination of an expert system for accident scenario identification with subsequent application of LOPA. The concept is called ExSys-LOPA, which employs, prepared in advance, values from engineering databases for identification of loss events specific to the selected target process and subsequently a accident scenario barrier model developed as an input for LOPA. Such consistent rules for the identification of accident scenarios to be analyzed can facilitate and expedite the analysis and thereby incorporate many more scenarios and analyze those for adequacy of the safeguards. An associated computer program is under development. The proposed technique supports and extends the Layer of Protection Analysis application, especially for safety assurance assessment of risk-based determination for the process industries. A case study concerning HF alkylation plant illustrates the proposed method.  相似文献   

11.
Maximum credible accident analysis is one of the most widely used concepts in risk assessment of chemical process industries. Central to this concept is the aspect of ‘credibility’ of envisaged accident scenarios. However, thus far the term credibility is mostly treated qualitatively, based on the subjective judgement of the concerned analysts. This causes wide variation in the results of the studies conducted on the same industrial unit by different analysts.

This paper presents an attempt to develop a criterion using which credible accident scenarios may be identified from among a large number of possibilities. The credible scenarios thus identified may then be processed for detailed consequence analysis. This would help in reducing the cost of the analysis and prevent undue emphasis on less credible scenarios at the expense of more credible ones.  相似文献   


12.
The availability of a hazard identification methodology based on early warnings is a crucial factor in the identification of emerging risks. In the present study, a specific method named Dynamic Procedure for Atypical Scenarios Identification (DyPASI) was conceived as a development of bow-tie identification techniques. The main aim of the methodology is to provide a comprehensive hazard identification of the industrial process analysed, joined to a process of continuous improvement of the results of the assessment. DyPASI is a method for the continuous systematization of information from early signals of risk related to past events. The technique provides a support to the identification and assessment of atypical potential accident scenarios related to the substances, the equipment and the site considered, capturing available early warnings or risk notions. DyPASI features as a tool to support emerging risk management process, having the potentiality to contribute to an integrated approach aimed at breaking “vicious circles”, helping to trigger a gradual process of identification and assimilation of previously unrecognised atypical scenarios.  相似文献   

13.
This paper deals with the major accident hazards associated with the intermediate temporary storage of dangerous substances in transportation-related activities. In particular, the hazards related to the presence of dangerous substances in port areas and marshalling yards are identified and analysed. Furthermore, a number of past accidents in transport interfaces have been collated from various sources and have been statistically analysed. Finally, the framework for major accident control in these activities is reviewed and discussed.  相似文献   

14.
This study examines the impact of the Three Mile Island accident on nuclear workers (N = 622) at the accident site and a ‘control’ plant in the same general area. Effects of the accident are examined by respondents' plant location, supervisory status, and basic job function. Major accident effects include perceived radiation exposure during the incident, evacuation behaviour, uncertainty and conflict regarding the accident, job related attitudes and tension, symptoms experienced during the accident period, and demoralization. Several of these general outcomes vary according to supervisory status and functional work area.  相似文献   

15.
一氯二乙基铝装置为甲类火灾危险装置。通过对一氯二乙基铝装置工艺流程及各单元工艺特点的详细分析,危险源的辨识从物料危险性、工艺过程危险性、工艺操作危险性等角度展开,从而确定出该装置的重大风险因素。在对一氯二乙基铝装置危险源辨识和分析的基础上,对各工艺单元提出相应的控制措施,预防事故发生。  相似文献   

16.
风险严重度指数法在毒气泄漏评价中的应用   总被引:1,自引:0,他引:1  
为评价某区域或某设备潜在的毒气泄漏事故场景的风险水平,以对不同的风险等级进行风险控制和安全规划,详细介绍了工业事故风险评估方法ARAMIS所采用的风险严重度指数法.首先基于事故频率和后果的风险矩阵选取毒气泄漏事故场景;然后运用毒气当量浓度计算任意暴露时间下不同风险严重度等级所对应的特征距离,并根据同一风险等级内风险严重度指数与距离的线性关系计算任意点的风险严重度指数;最后应用1个实例分析了考虑所研究区域的风向概率后对风险严重度指数的真实影响,便于工厂或企业识别不同的风险等级,进行不同场景下风险水平的对比性研究,为其安全设计及风险分析提供了一种新的评估方法.  相似文献   

17.
针对低温冷冻制取高纯度(≥99.999%)氮气和液氮的生产工艺及装置,对其生产过程中存在或潜在的危险、有害因素进行辨识和分类,并作出危险和有害程度评价;明确物料泄漏、设备缺陷、人为因素等事故致因,特别对氮窒息事故进行案例剖析。同时,应用目的树分析方法,从工艺技术和安全管理角度,提出消除或减少生产性危险及职业性危害的安全对策和措施。结果表明:在低温制高纯氮生产过程中,采取技术上和管理上的安全对策与措施,能有效预防火灾、爆炸、氮中毒等事故发生,避免低温冻伤等职业危害,从而防患于未然。  相似文献   

18.
The implementation of inherently safer design concepts is considered beneficial to avoid hazards during early stages of design. The application of existing process design and modeling techniques that aid ‘substitution’, ‘intensification’ and ‘attenuation’ has been shown in this work. The techniques have been applied to solvent processes because of the inherent hazards associated with them, such as large inventories, and presence of highly toxic and flammable materials. For ‘substitution’, computer aided molecular design technique has been applied to select inherently safer solvents for a solvent operation. For ‘intensification’ and ‘attenuation’, consequence models and regulatory guidance from EPA RMP have been integrated into process simulation. Combining existing techniques provides a design team with a higher level of information to make decisions based on process safety. A case study has been shown for liquid extraction of acetic acid–water mixture. Suitable solvents were identified using ICAS 11.0-ProCAMD, and consequence models were integrated into Aspen plus simulator using a calculator sheet. Solvents such as 5-nonanone, 2-nonanone and 5-methyl-2-hexanone provide inherently safer options, but conventionally-used solvent, ethyl acetate, provides higher degree of separation capability. A conclusive decision regarding feasible solvents and operating conditions would depend on design requirements, regulatory guidance, and safety criteria specified for the process. Inherent safety has always been an important consideration to be implemented during early design steps, and this paper presents a methodology to incorporate the principles and to obtain inherently safer alternatives.  相似文献   

19.
Dynamic risk assessment using failure assessment and Bayesian theory   总被引:1,自引:0,他引:1  
To ensure the safety of a process system, engineers use different methods to identify the potential hazards that may cause severe consequences. One of the most popular methods used is quantitative risk assessment (QRA) which quantifies the risk associated with a particular process activity. One of QRA's major disadvantages is its inability to update risk during the life of a process. As the process operates, abnormal events will result in incidents and near misses. These events are often called accident precursors. A conventional QRA process is unable to use the accident precursor information to revise the risk profile. To overcome this, a methodology has been proposed based on the work of Meel and Seider (2006). Similar to Meel and Seider (2006) work, this methodology uses Bayesian theory to update the likelihood of the event occurrence and also failure probability of the safety system. In this paper the proposed methodology is outlined and its application is demonstrated using a simple case study. First, potential accident scenarios are identified and represented in terms of an event tree, next, using the event tree and available failure data end-state probabilities are estimated. Subsequently, using the available accident precursor data, safety system failure likelihood and event tree end-state probabilities are revised. The methodology has been simulated using deterministic (point value) as well as probabilistic approach. This Methodology is applied to a case study demonstrating a storage tank containing highly hazardous chemicals. The comparison between conventional QRA and the results from dynamic failure assessment approach shows the significant deviation in system failure frequency throughout the life time of the process unit.  相似文献   

20.
A tool (called CESMA) was developed to carry out cost–benefit analyses and cost-effectiveness analyses of prevention investments for avoiding major accidents. A wide variety of parameters necessary to calculate both the costs of the considered preventive measures and the benefits related with the avoidance of accidents were identified in the research. The benefits are determined by estimating the difference in (hypothetical) major accident costs without and with the implementation of a preventive measure. As many relevant costs and benefits as possible were included into the tool, based on literature and expert opinion, in order to be able to deliver an all-embracing cost–benefit analysis and cost-effectiveness analysis to assist in the investment decision process. Because major accidents are related to extremely low frequencies, the tool takes the uncertainty of the unwanted occurrence of a major accident into account through the usage of a so-called ‘disproportion factor’. Compared with existing software, the CESMA tool is innovative by striving for an as-accurate-as-possible picture of costs and benefits of major accident prevention, and taking the uncertainties accompanying disastrous events into consideration. Furthermore, an illustrative example of CESMA is presented in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号