首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

2.
In the present study, 4 different functionalized pyrazoliums based on sulfoalkyl-pyrazolium hydrogensulfate and alkylsulfo-alakylpyrazolium hydrogensulfate were explored to catalyze biodiesel production from bitter apple oil (BAO). The results demonstrated that a longer chains catalyst of 2-(4-sulfobutyl) pyrazolium hydrogensulfate (SBPHSO4) exhibited the highest catalytic activity, which is attributed to its strong acidity. The highest yield of esters was up to 89.5% when the reaction was carried out under the conditions of 5.2 wt% of SBPHSO4, molar ratio of methanol to BAO of 15:1, 170 °C, and 800 rpm for 6 h. These results demonstrated that ionic liquids offer a promising new type of pyrazolium catalyst for biodiesel production. The use of clean ionic liquids in preparing clean biodiesel could solve the drawbacks associated with using the old conventional catalysts and might be employed as an efficient catalyst for such relevance.  相似文献   

3.
The effects of employing activated Al2O3 during the catalytic pyrolysis of waste printed circuit boards (WPCBs) are investigated, focusing on the recycling of light oil. Variations in the pyrolysis process are studied through analysis of the phase distribution, water content and boiling point fractions of the resulting products. Product composition and carbon number distribution are analyzed using gas chromatography techniques. The use of activated Al2O3 increases the light oil fraction and also reduces the quantity of brominated products formed. It was determined that the best yield of light oil and most efficient debromination resulted from catalytic pyrolysis at 600 °C. Applying catalyst-to-feed ratios in the range of 1.0–1.5 also maximizes the yield of light oil. The major oil fraction resulting from catalytic pyrolysis has a boiling point range of 0–250 °C and carbon number range of C6–C9, showing for use as a potential fuel after suitable treatment such as hydrogenation. At a higher catalyst-to-feed ratio of 2.0, activated Al2O3 generates a high proportion of light oil fractions containing a significant quantity of chemicals such as phenol (52.67% at 600 °C), although an overall lower yield of oil is obtained. The oil produced in this manner may also be used as a raw material feedstock for the production of various other useful chemicals.  相似文献   

4.
In this study, pyrolysis of sugarcane bagasse was performed in fixed bed tubular reactor under the conditions of nitrogen atmosphere, by varying temperature and different particle sizes. The effect of final pyrolysis temperature from 400 to 500°C and the nitrogen flow rate from 50 to 200 cc min−1 on the pyrolysis product yields from sugarcane bagasse have been investigated. The Maximum bio-oil yield obtained is 24.12 wt% at the final pyrolysis temperature of 450°C, N2 flow rate of 50 cc min−1 and particle size of mesh number −8 + 12. The yield of bio-oil decreases with increase in temperature from 450 to 550°C and N2 flow rate from 50 to 200 cc min−1. The various characteristics of pyrolysis oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of pyrolysis oil with a heating value of 37.01 MJ Kg−1 was established as CH1.434 O0.555 N0.004. The results from the pyrolysis show the potential of sugarcane bagasse as an important source of liquid hydrocarbon fuel.  相似文献   

5.
The effect of different carbon anodes was examined in a new design of single chambered microbial fuel cell (SCMFC). The new cell design used a low-cost hydrophilic membrane to replace costly proton exchange membranes and carbon felt and a range of carbon and modified carbon anodes were investigated. The fuel for the SCMFC was brewery wastewater which was diluted with domestic wastewater and the presented microflora acts as a source of electro-active bacteria. The membrane acts as a separator between the anode chamber and an air cathode and allows the transfer of ions based on the wastewater's natural conductivity. The air cathode was carbon black (Ketjen Black EC 300J) which was deposited (1 mg cm−2 concentration) directly onto the surface of the separator (one side of the membrane). Steady state polarization demonstrated maximum power densities of up to 30 mW m−2 and a steady state power density of 20 mW cm−2 at a current density of 110 mA m−2 was achieved. The best performing anodes were made from carbon modified with quinone/quinoid groups. With unmodified graphite felt (the control anode material) as anode, the maximal power density obtained was 9.5 mW m−2.  相似文献   

6.
Titania nanomaterial with an anatase structure and 5.6 nm crystallite size and 280.7 m2 g−1 specific surface areas had been successfully prepared by sol–gel/hydrothermal route. The effect of pH as a type of autoclave and calcination was studied. Crystallite size and phase composition of the prepared samples were identified. X-ray diffraction analyses showed the presence of anatase with little or no rutile phases. The crystallite size of the prepared TiO2 with acidic catalyst was both smaller than that prepared with basic catalyst, and was increasing after acidic calcinations by a factor 4–5. Basic calcinations produced a specific increase of 1.5. Rutile ratio and the particle size were increased after calcination at 500 °C. However, TiO2 powder synthesized using a basic catalyst persisted the anatase phase and a loosely aggregation of particles. Anatase TiO2 as prepared with acidic catalyst in Teflon lined stainless steel autoclave demonstrated the highest photocatalytic activity for degradation of 2,6-dichlorophenol-indophenol under ultraviolet irradiation with t½ 0.8 min.  相似文献   

7.
Cyanides are very popular electrolytes used in metal electroplating, metal ore processing, chemical and electrochemical applications. Due to wide utility of these technologies cyanides become increasingly harmful effluent, which has to be treated. One of the best ways to degrade cyanides is an anodic electrooxidation. In this work the destruction of free cyanide on platinum, titanium and stainless steel (SS) electrodes has been investigated. It was determined that anode material greatly influences the process of cyanide electrooxidation. The best results were obtained by using the Pt electrode. This kind of anode allows us to reduce CN? concentration from 0.1 M to 0.06 M during the first hour of electrolysis at a current density of 200 A m?2, with a current efficiency up to 80%. To substitute expensive Pt anodes Ti electrodes covered with nanolayers of Pt were prepared and used for the anodic oxidation of cyanide ions. An effect of a thickness of Pt layer and temperature of an electrolyte solution were studied. It was established that using platinized Ti electrodes the current efficiencies of electrooxidation of cyanides of about 60% can be obtained. The usage of chloride ions to facilitate the destruction of cyanide was also studied.  相似文献   

8.
The base catalyst LZ-2, which was the mixture of CaO and Na–NaOH/Al2O3·3H2O, was chosen for the decomposition of phenol tar to generate valuable chemicals. The selectivity of LZ-2 for dimethyl phenyl carbinol, α-methyl styrene dimer and cumenyl phenol was 100%, 100% and 98%, respectively. Under the optimum operating conditions of catalyst 2.5 wt%, operating temperature 603.15 K and decomposition time 3.5 h, decomposition ratios of cumenyl phenol and dimethyl phenyl carbinol were 98.7% and 99.97%, respectively. In addition, the experimental repeatability demonstrated that the total yield of valuable chemicals still reached 90.1% after the catalyst being used five times. Mass and energy balance indicated that the catalytic decomposition was a high potential for the recycling of chemicals from phenol tar.  相似文献   

9.
10.
In this research nanocatalysts containing 5, 10 and 15 wt.% of Ni, dispersed by sonication over CeO2–clinoptilolite composite support were compared toward total oxidation of toluene. Their catalytic performance at different temperatures between 150 and 350 °C was studied based on the oxidative destruction of toluene. The results indicated that the activity of Ni/CeO2–clinoptilolite nanocatalyst for toluene oxidation increased from 33 to 44% at 250 °C by employing sonochemical method in synthesis of catalyst. Meanwhile, the catalytic activity was also improved when Ni content was increased from 5 to 10 and 15 wt.%. With the aid of several characterization techniques like XRD, FESEM, PSD, EDX, BET and FTIR, the correlation between nanocatalyst structure and its activity was addressed. It is indicated that sonochemical method can lift the catalytic activity due to the better dispersion of catalyst active components and also higher surface area. Among sonicated samples, 15 wt.% Ni nanocatalyst showed the highest toluene oxidation due to the better dispersion of catalyst active components and hence to more effective catalytic sites.  相似文献   

11.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

12.
Evaluation of Oriental beech (Fagus orientalis L.) was investigated with aspect of thermo-chemical conversion to obtain bio-char, bio-oil and gaseous. When the pyrolysis temperature increased, the bio-char yield decreased. A high temperature and smaller particles increase the heating rate resulting in a decreased bio-char yield. The bio-char obtained are carbon rich, with high heating value and relatively pollution-free potential solid biofuel. The liquefaction yield sharply increased with increasing the temperature near critical temperature and after that. In the pyrolysis, increases of liquid yields are considerably sharply for all of the samples with increasing of pyrolysis temperature from 690 K to 720 K. The beechnut oil was converted to biodiesel in supercritical methanol without using the catalyst. Experiments have been carried out in an autoclave at 493, 523 and 593 K, and with molar ratios of 1:6–1:40 of the oil to methanol. The yield of alkyl ester increased with increasing the molar ratio of oil to alcohol.  相似文献   

13.
Biodiesel as an alternative fuel for fossil diesel has many benefits such as reducing regulated air pollutants emissions, reducing greenhouse gases emissions, being renewable, biodegradable and non-toxic. In this study, used frying oil was applied as a low cost feedstock for biodiesel production by alkali-catalyzed transesterification. The design of experiments was performed using a double 5-level-4-factor central composite design coupled with response surface methodology in order to study the effect of factors on the yield of biodiesel and optimizing the reaction conditions. The factors studied were: reaction temperature, molar ratio of methanol to oil, catalyst concentration, reaction time and catalyst type (NaOH and KOH). A quadratic model was suggested for the prediction of the ester yield. The p-value for the model fell below 0.01 (F-value of 27.55). Also, the R2 value of the model was 0.8831 which indicates the acceptable accuracy of the model. The optimum conditions were obtained as follows: reaction temperature of 65 °C, methanol to oil molar ratio of 9, NaOH concentration of 0.72% w/w, reaction time of 45 min and NaOH as the more effective catalyst. In these conditions the predicted and observed ester yields were 93.56% and 92.05%, respectively, which experimentally verified the accuracy of the model. The fuel properties of the biodiesel produced under optimum conditions, including density, kinetic viscosity, flash point, cloud and pour points were measured according to ASTM standard methods and found to be within specifications of EN 14214 and ASTM 6751 biodiesel standards.  相似文献   

14.
Introduction: Studies have reported associations between obesity and injury in a single occupation or industry. Our study estimated the prevalence of work-site injuries and investigated the association between obesity and work-site injury in a nationally representative sample of U.S. workers. Methods: Self-reported weight, height, and injuries within the previous three months were collected annually for U.S. workers in the National Health Interview Survey (NHIS) from 2004–2012. Participants were categorized as normal weight (BMI: 18.5–24.9 kg/m2), overweight (BMI: 25.0–29.9), obese I (BMI: 30.0–34.9), and obese II (BMI: 35 +). The prevalence of injury and prevalence ratios from fitted logistic regression models was used to assess relationships between obesity and injury after adjusting for covariates. Sampling weights were incorporated using SUDAAN software. Results: During the 9-year study period from 2004 to 2012, 1120 workers (78 workers per 10,000) experienced a work-related injury during the previous three months. The anatomical sites with the highest prevalence of injury were the back (14.3/10,000 ± 1.2), fingers (11.5 ± 1.3), and knees (7.1 ± 0.8). The most common types of injuries were sprains/strains/twists (41.5% of all injuries), cuts (20.0%), and fractures (11.8%). Compared to normal weight workers, overweight and obese workers were more likely to experience work-site injuries [overweight: PR = 1.25 (95% CI = 1.04–1.52); obese I: 1.41 (1.14–1.74); obese II: 1.68 (1.32–2.14)]. These injuries were more likely to affect the lower extremities [overweight: PR = 1.48, (95% CI = 1.03–2.13); obese I: 1.70 (1.13–2.55); obese II: 2.91 (1.91–4.41)] and were more likely to be due to sprains/strains/twists [overweight: PR = 1.73 (95% CI = 1.29–2.31); obese I: PR = 2.24 (1.64–3.06); obese II: PR = 2.95 (2.04–4.26)]. Conclusions: Among NHIS participants, overweight and obese workers were 25% to 68% more likely to experience injuries than normal weight workers. Practical applications: Weight reduction policies and management programs may be effectively targeted towards overweight and obese groups to prevent or reduce work-site injuries.  相似文献   

15.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

16.
Concerning the high volume of wastewater containing dye in Iran and its adverse effects, it is necessary to develop scientific solutions for treating these wastewaters. The aim of this study was to evaluate the efficiency of the alumina-coated multi-walled carbon nanotubes in removing the Reactive Red 198 (RR 198) and Blue 19 (RB 19) dyes. Synthetic samples including dye with different concentrations were prepared. These samples were put in contact with different contents of alumina/multi-walled carbon nanotubes, in different pH values, in different contact times, different temperatures and the presence of sodium sulfate or sodium carbonate. The optimum pH, dye concentration and temperature for removal of the two dyes was 3, 50 mg l−1 and 25 °C, respectively. The optimum adsorbent dose for removal the RR 198 dye was 0.5 g l−1 and for Blue 19 was 0.4 g l−1. The optimum contact time for RR 198 was 150 min and RB 19 was 180 min. In this condition, maximum removal efficiency for RR 198 and RB 19 was 91.54% and 93.51%, respectively. The adsorption study was analyzed kinetically, and the results revealed that the adsorption fitted a pseudo-second order kinetic model. According to these results alumina/multi-walled carbon nanotubes can effectively remove RR 198 and RB 19 from aqueous solutions.  相似文献   

17.
BackgroundChemical hazard communication is intended to alert users of the potential hazards of chemicals. Hazard information needs to be understood and recalled. Recall of hazard communication is critical when the written form of the information is not available at the time it is required.MethodsA cross-sectional study investigating associations between recall of chemical safety information on labels amongst 402 participants including 315 workers and 87 consumers in two provinces of South Africa.ResultsRespondents were predominantly male (67.7%), the median age was 37 years (IQR: 30-46 years) and less than half of the participants completed high school (47.5%). Multivariate analysis identified the following positive associations with the recall of all the label elements listing the strongest association: call appropriate services and industrial vs consumer sector (OR = 2.4; 95% CI: 1.2; 4.6 ); call appropriate services and transport vs consumer sector (OR = 4.4; 95% CI: 1.2; 16.0); flammable symbol and male vs female gender (OR = 2.3; 95% CI: 1.0; 5.3); flammable symbol and home language English vs African languages (OR = 6.6; 95% CI: 2.1; 21.2); any hazard statement and home language Afrikaans vs African languages (OR = 14.0; 95% CI: 3.6; 54.2), any first aid statement and further education vs none (OR = 3.3; 95% CI: 1.3; 8.0), correct chemical name and industry blue collar workers vs non-industry blue collar workers (OR = 2.6; 95% CI: 1.1; 6.1), correct chemical name and non-industry white collar occupations vs non-industry blue collar workers (OR = 2.7; 95% CI: 1.0; 7.1).ConclusionThe study found a number of potential positive associations which influence recall of label elements of which some (e.g., sector, gender, occupation) suggest further research. Relevant policies in South Africa should ensure that the safety information on chemical labels is clearly visible to read and understandable which aids recall and the reduction in harmful chemical exposures.  相似文献   

18.
The effect of 7 mT (milliTesla) SMF (static magnetic field) on poly-3-hydroxybutyrate (PHB) production was studied at an acetate concentration of 260 Cmmol l?1 and temperature of 10 °C. The SMF decreased the specific acetate uptake rate by 29%, but increased the maximum PHB content and the yield of PHB on acetate by 32 and 28% respectively. The ratio qP/(qS ? qP), which described specific PHB production rate over the difference between specific acetate uptake rate and specific PHB production rate, was introduced for evaluation of the ratio of carbon flux into PHB synthesis and into the TCA (tricarboxylic acid) cycle. This value reached 2.3 when activated sludge culture was exposed to magnetic field of 7 mT, which was 1.1 times higher than the qP/(qS ? qP) value obtained without magnetic exposure. Therefore, the SMF promoted diversion of more acetyl-CoA towards PHB synthesis and could offset adverse effects of high acetate concentration and low temperature. These results provide evidence that SMF enhances PHB production by activated sludge.  相似文献   

19.
The kinetic analysis method using non-isothermal technique was proposed to determine the kinetic parameters for the transesterification reaction of waste pig fat in supercritical alcohols. To investigate the transesterification of waste pig fat, the waste pig fat to alcohol ratio (w/w) was varied from 1:1.5 to 1:2.5 between the temperatures 220 and 290 °C at an interval of 10 °C in a 25 mL batch reactor. The products were analyzed by gas chromatography mass spectrometry. To verify the effectiveness of the proposed kinetic analysis method, the experimental values were compared with the values calculated using the kinetic parameters obtained from this work. It was found that the proposed kinetic analysis method gave reliable kinetic parameters for the transesterification of waste pig fat in supercritical alcohols. Further, it was found that the apparent activation energy for supercritical ethanol was lower than the value for supercritical methanol.  相似文献   

20.
The use of different lower and higher alcohols viz; methanol, ethanol, n-propanol and n-octanol, for the synthesis of methyl, ethyl, propyl and octyl fatty acid esters by transesterification of vegetable oil (triglycerides) with respective alcohols also known as ‘Bio-diesel’ and ‘Bio-lubricants’ was studied in detail. The reactions were carried out in a batch process. The activity with different supports like clay (K-10), activated carbon, ZSM-5, H-beta and TS-1 were compared. The superacids (heteropolyacids, HPA) viz; Dodeca-Tungstophosphoric acid [H3PO4·12 WO3·xH2O] (TPA) and Dodeca-Molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3-O40P + aq] (DMAA) was used to increase the acidity and so the activity by loading on the most active support viz; clay (K-10). These HPA loaded on clay as a catalyst was used for the following study: effect of percent HPA loading on clay, effect of different vegetable oils, effect of different alcohols on the triglyceride conversion based on glycerol formation and selectivity based on alkyl esters formation. The data is compared at the best-optimized identical set of operating reaction conditions: 170 °C, 170 rpm, catalyst loading: 5% (w/w of reaction mixture), molar ratio (oil: alcohol): 1:15 and time on stream of 8 h. The generated data is also evaluated based on the reported one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号