首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
We here report our studies on the upgrading of flash pyrolysis oil using an improved alcohol treatment method. The method consists of treating pyrolysis oil with a high boiling alcohol like n-butanol in the presence of a (solid) acid catalyst at 323–353 K under reduced pressure (<10 kPa). Using this approach, the water content of the pyrolysis oil is reduced significantly. Variables like the type of alcohol (n-butanol, ethylene glycol, 2-ethyl-hexyl-alcohol) and liquid and solid acids were explored and the product properties of the resulting upgraded pyrolysis oil (kinematics viscosity, water content, pH and heating value) were determined. On the basis of these screenings studies, n-butanol and the solid acid Nafion SAC13 seem to have the highest potential. The product properties of the upgraded pyrolysis oils, and particularly the heating value and the acidity are considerably improved. These improvements are not only due to blending effects but also the result of the occurrence of chemical reactions (a.o. esterification).  相似文献   

2.
This paper presents the photo-catalytic degradation of real refinery wastewater from National Refinery Limited (NRL) in Karachi, Pakistan, using TiO2, ZnO, and H2O2. The pretreatment of the refinery effluent was carried out on site and pretreated samples were tested at 32–37 °C in a stirrer bath reactor by using ultra-violet photo oxidation process. The degradation of wastewater was measured as a change in initial chemical oxygen demand (COD) and with time. Optimal conditions were obtained for catalyst type, and pH. The titanium dioxide proved to be very effective catalysts in photo-catalytic degradation of real refinery wastewater. The maximum degradation achieved was 40.68% by using TiO2 at 37 °C and pH of 4, within 120 min of irradiations. When TiO2 was combined with H2O2 the degradation decreased to 25.35%. A higher reaction rate was found for titanium dioxide. The results indicate that for real refinery wastewater, TiO2 is comparatively more effective than ZnO and H2O2. The experiments indicated that first-order kinetics can successfully describe the photo-catalytic reaction. The ANOVA results for the model showed satisfactory and reasonable adjustment of the second-order regression model with the experimental data. The ANOVA results also showed that pH is significant than reaction time and catalyst dosage of TiO2; and in case of ZnO, reaction time is significant than pH and catalyst dosage. This study proves that real refinery wastewater reacts differently than synthetic refinery wastewater, oil field produced water or oil water industrial effluent.  相似文献   

3.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

4.
The removal of heavy metals from aqueous effluents so as to avoid their toxic, bioaccumulation and biomagnification effects to humans and environment is usually realized by means of physical, chemical treatment, and biological processes. The aim of this study is to evaluate the potential of rapeseed waste from biodiesel production as a biosorbent for Zn(II) ions.The ability of the rapeseed waste for Zn(II) biosorption exhibited a maximum at pH 4.5–5. The removal efficiency of Zn(II) from solution with an initial concentration of 72 mg L−1 varied from 39% to 89% for an increase of the rapeseed waste dose from 2 to 30 g L−1. The amount of Zn(II) retained on the tested rapeseed increased with increasing metal ion concentration, but the Zn(II) sorption percentage decreased. The equilibrium data are fitted to the Langmuir isotherm better than to the Freundlich isotherm. The kinetics of Zn(II) biosorption process follows a pseudo-second order model. The thermal stability of the rapeseed before and after Zn(II) biosorption was studied by thermogravimetric analysis. It was found that the zinc loaded rapeseed exhibits a better initial thermal stability than the original rapeseed, presumably due to the cross linking generated by the intermolecular complexation of Zn(II) ions. In both cases, the thermal decomposition takes place according to some reassembling kinetic models, in two phases with order n reactions. The results of this study strongly suggest the possibility to use rapeseed as an effective biosorbent for Zn(II) ions removal from aqueous effluents (municipal/industrial wastewaters).  相似文献   

5.
The kinetic analysis method using non-isothermal technique was proposed to determine the kinetic parameters for the transesterification reaction of waste pig fat in supercritical alcohols. To investigate the transesterification of waste pig fat, the waste pig fat to alcohol ratio (w/w) was varied from 1:1.5 to 1:2.5 between the temperatures 220 and 290 °C at an interval of 10 °C in a 25 mL batch reactor. The products were analyzed by gas chromatography mass spectrometry. To verify the effectiveness of the proposed kinetic analysis method, the experimental values were compared with the values calculated using the kinetic parameters obtained from this work. It was found that the proposed kinetic analysis method gave reliable kinetic parameters for the transesterification of waste pig fat in supercritical alcohols. Further, it was found that the apparent activation energy for supercritical ethanol was lower than the value for supercritical methanol.  相似文献   

6.
The current homogeneous acid catalyst for biodiesel product however, would lead to formation of many undesirable by-products that make the post treatment of the biodiesel to be difficult and costly. Thus, sucrose-derived solid acid catalyst was developed in the present study which aims to improve the esterification process and reduce the generation of waste. The physicochemical properties of the synthesized catalysts were studied by various techniques such as, BET surface area, X-ray diffraction (XRD), temperature programmed desorption of NH3 (TPD-NH3), scanning electron microscopy (SEM). Response surface methodology (RSM) with central composite design (CCD) is used to determine the optimum parameters for the catalytic reaction. The experimental results showed that the catalyst exhibited good catalytic activity in the transesterification of PFAD, providing maximum biodiesel yield of 94% at optimum parameters. The better catalytic activity of the aforementioned catalyst in the biodiesel reaction could be attributed to the presence of optimal number of catalytically active acid site density on its surface.  相似文献   

7.
Biodiesel production from waste oil feedstocks by solid acid catalysis   总被引:4,自引:0,他引:4  
Biodiesel is a non-toxic and biodegradable substitute for petroleum-based diesel. However, it is impractical to use refined edible oils to produce biodiesel due to its high cost and priority for food products, especially in China, while waste oils with high free fatty acids (FFAs) can be considered as the raw materials. In the present work, a solid acid catalyst comprising SO42−/TiO2–SiO2 was prepared, characterized and studied for its activity for the production of biodiesel from several low cost feedstocks with high FFAs. The solid acid catalyst can be recycled, easily removed and can simultaneously catalyze esterification and transesterification. The influence of reaction parameters was studied, and the optimized reaction parameters are reaction temperature 200 °C, molar ratio of methanol to oil 9:1 and catalyst concentration 3 wt.%. The catalyst showed good stability. A continuous process for biodiesel production from cheap raw feedstocks was proposed, and a 10,000-tonnes/year biodiesel production demonstration plant has been built.  相似文献   

8.
Innovative simple method for the preparation of simonkolleite-TiO2 photocatalyst with different Zn contents was achieved. The prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, Raman and diffuse reflectance spectroscopy techniques. The photocatalytic activities of the materials were evaluated for the simultaneous detoxification of hexavalent chromium (Cr(VI)) and oxidation of organic compounds commonly present in wastewater under simulated solar light. The best photoreduction efficiency of Cr(VI) has been achieved at 1000 ppm simonkolleite-TiO2 photocatalyst of 5% Zn/TiO2 weight ratio, and pH value of 2.5 to enhance the adsorption onto catalyst surface. Photoreduction was significantly improved by using formic acid as holes scavenger owing to its chemical adsorption on the catalyst surface. Finally, 100% photoreduction of Cr(VI) could be achieved using formic/simonkolleite-TiO2 systems under sunlight.  相似文献   

9.
In this research, transesterification of the waste cooking oil has been studied. Response surface methodology (RSM) based on Box–Behnken design was used to investigate the effects of the main operating parameters, including the methanol to oil molar ratio, catalyst concentration, and reaction temperature, on the biodiesel yield. The results revealed that the catalyst concentration is the most important parameter. The maximum biodiesel yield under the optimized conditions was 99.38 wt.%. Thermogravimetric analysis (TGA) was used for the determination of biodiesel conversion and the results were compared with that of gas chromatography (GC) analysis, showing a very small difference. Furthermore, an empirical quadratic equation has been presented to show the relation between biodiesel conversion and product viscosity.  相似文献   

10.
Produced water is the largest wastestream of oil and gas exploration but its chemical composition hinders its beneficial use. Effective treatment and reuse of produced water can mitigate scarcity of fresh water, especially in arid areas. Presence of inorganic compounds such as boron in produced water renders its beneficial use difficult. In this study, boron removal from produced water was investigated. Synthetic wastewater was prepared simulating the range of boron concentrations in produced water. Four operating parameters pH (3–11), charge loading (1200–3600 Ah/m3), contact time (15–90 min) and concentration (10–30 mg/L) were selected and their optimum conditions investigated. The obtained optimum conditions were applied to treat real produced water. Residual boron concentration of 0.3 mg/L was obtained from initial boron concentration of 15 mg/L in real produced water at optimum conditions of pH 7, charge loading 2400 Ah/m3 and contact time 90 min. Boron adsorption could be represented by Langmuir and Freundlich isotherm models. Electrocoagulation can be used for the effective removal of boron from produced water.  相似文献   

11.
Maghemite (ϒ-Fe2O3) nanoparticles were impregnated to nanoporous carbon obtained from tomato waste (TWNC). The prepared magnetic composite (MTWNC) was characterized and used to remove tetracycline (TC) from water and then easily be separated from the medium by a magnetic technique. The morphologies and surface chemistries of both magnetic and non-magnetic nanoporous carbons were studied by FTIR, XRD, SEM, SEM-EDX, VSM, BET surface area, proximate and elemental analysis determinations. Batch adsorption studies were carried out and the effects of pH, initial TC concentration, adsorbent dose, ionic strength and temperature were investigated. The adsorption kinetics of TC on MTWNC could be expressed well by the pseudo-second order model, and sorption isotherms were described by Langmuir equation with maximum adsorption capacity of 60.60 mg/g at pH 4 and 50 °C. Thermodynamic parameters showed that the adsorption of TC onto MTWNC was feasible, spontaneous and endothermic. Furthermore, the recyclability of the adsorbent was tested with 0.01 M NaOH solution, and the results show that the synthesized composite adsorbent could be employed repeatedly in wastewater treatment.  相似文献   

12.
Aluminium-based water treatment sludge was used as a coagulant for removing/recovering phosphate from the effluent of upflow anaerobic sludge blanket (UASB) reactor treating municipal wastewater. The effect of three variables, namely sludge dose, initial pH and fresh coagulant (poly-aluminium chloride, PACl) dose was studied using response surface methodology. About 87% phosphate removal could be obtained at the optimum conditions of sludge dose 13.8 g/L, initial pH 6, and fresh PACl dose 5.8 mg Al/L. In order to achieve a similar phosphate removal, a dose in the range of 30–40 mg Al/L of fresh PACl was required. The results suggest that water treatment sludge can be reused as a coagulant for post-treatment of UASB reactor effluent treating municipal wastewater and can be considered as a promising alternative for removing phosphate which can substantially reduce the consumption of fresh PACl. The sludge generated during this process could potentially be used in land application which results in recycling of phosphate.  相似文献   

13.
膜生物反应器处理酱油废水的试验研究   总被引:1,自引:0,他引:1  
采用一体式膜生物反应器工艺处理酱油生产废水,探讨了进水COD、溶解氧、色度等工艺参数对系统处理效果的影响,并分析了膜污染问题.结果表明,系统具有较好的处理效果,当进水COD为505~1 209 mg/L、色度为180~200、浊度为251~471 NTU时,出水水质稳定,COD去除率平均达到90%,而色度、浊度的平均去除率也分别达到了79%和98%.在系统正常运行的2个月内,膜污染发展缓慢.  相似文献   

14.
Biohydrogen production by dark fermentation in a series of batch tests under different environmental control conditions was evaluated to determine the optimal initial cultivation pH and temperature for a continuous-flow kinetic test to validate the kinetic model system. The waste activated sludge (WAS) from fructose-processing manufacturing was used as the model substrate for biohydrogen production. The batch experiments for biohydrogen production were conducted in a 6 l bioreactor. Fifteen batch kinetic tests were investigated when pH was controlled at 6, 7, 8 and 9 as well as the temperature was controlled at 37 °C, 45 °C and 55 °C, respectively. The experimental results indicated that the optimal operational condition for hydrogen production occurred while pH was 7 and temperature was 55 °C with the highest hydrogen production of 7.8 mmol. The optimal recovery time for hydrogen was 25 h in the batch experiments. Furthermore, the kinetic test of biohydrogen production was performed by anaerobic mixed microbial culture in the continuous-flow experiment when pH and temperature was maintained at 7 and 55 °C. Approximately 60% and 7% of substrate solution was converted into acetate and hydrogen, respectively, at the steady state. Roughly only 0.77% and 2.7% of substrate solution was converted into propionate and butyrate, respectively, at a steady-state condition. The experimental and modeling approaches presented in this study could be employed for the design of pilot-scale and full-scale anaerobic biohydrogen fermentors using food-processing waste activated sludge (WAS) as a substrate solution.  相似文献   

15.
Adsorptive efficacy of lignocellulosic waste char (LW-CHAR) and activated carbon (LW-AC) toward inorganic (Hg2+) and organic (MeHg+) mercury ions was studied. The LW-CHAR and LW-AC were, respectively, prepared by carbonization and KOH activation processes of lignocellulosic waste (LW) carried out at 700 °C. The Hg2+ adsorption onto the LW-CHAR was lower than LW-AC, however, an opposite result was observed for the MeHg+ indicating the nature of the surface interactions of both mercury ions to respective adsorbent surfaces was significantly different. The adsorption data analysis of both mercury ions was found however to only follow the Langmuir isotherm and pseudo-second order kinetic models whereby a combination of chemisorption and diffusional process was the governing mercury ions adsorption mechanism.  相似文献   

16.
探讨了对广钢集团广铜公司的污水处理系统的一些改进方案。通过加强对废水排放的管理,加建天棚临时存放污泥,改进风机加强曝气过程的搅拌作用等措施,使得该系统更适应日益扩大的生产规模,废水处理能力提高了70%,并且污水处理质量提高,运行更为稳定,能源消耗减少,年可节电费10万元,污水处理费用降低,处理后废水的回用率达40%以上。  相似文献   

17.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

18.
TiO2光催化氧化法处理草浆纸厂废水的研究   总被引:15,自引:3,他引:12  
以TiO2做催化剂,用光催化氧化法处理碱法草浆纸厂废水.讨论了pH值、H2O2的用量、催化剂用量、光照时间等因素对CODCr去除率的影响,优选了反应条件.结果表明:在 pH=6.08,TiO2用量为0.03 g,光照时间3 h,H2O2量(体积分数)为0.60%的条件下,废水的CODCr去除率可达96%以上.处理后废水达到排放标准.  相似文献   

19.
Produced water is a significant waste stream generated in association with oil and gas production. It contains high concentrations of hydrocarbon constituents and different salts. In this study, a membrane sequencing batch reactor (MSBR) was used to treat synthetic and real produced water. The MSBR was evaluated in terms of biodegradation of hydrocarbons in the synthetic produced water with various organic loading rates (OLR) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m3 day)), cycle time (12, 24, and 48 h), and membrane performance. The effects of salt concentrations at different total dissolved solids (TDS) (35,000, 50,000, 100,000, 150,000, 200,000, and 250,000 mg/L) on biological treatment of the pollutants in the synthetic and real wastewater were studied. At an OLR of 1.124 kg COD/(m3 day), an HRT of 48 h and TDS of 35,000 mg/L, removal efficiencies of 97.5%, 97.2%, and 98.9% of COD, total organic carbon (TOC), and oil and grease (O&G), respectively were achieved. For the real produced water, removal rates of 86.2%, 90.8%, and 90% were obtained for the same conditions. However, with increasing salt content, the COD-removal efficiencies of the synthetic and real produced water were reduced to 90.4% and 17.7%, respectively at the highest TDS.  相似文献   

20.
采用ClO_2三相催化氧化工艺对焦化污水二沉池出水的处理进行了中试研究,考察了进水量、供气量、加药量等参数对焦化污水COD处理效果的影响,得出的最佳工艺条件为:进水量0.2 m~3/h,有效催化剂用量0.5 m~3,供气量10 m~3/h,盐酸投加量60 m L/h,氯酸钠投加量30 m L/h。最佳工艺条件下,平均出水COD为44 mg/L,平均去除率为80.3%,能达到国家一级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号