首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
采用镀金石英砂来富集大气中的气态总汞,AMA 254测汞仪测定。结果表明,不同采样时间下的单级吸附管的吸附效率均在90%以上,采样40min时的相对标准偏差为5%左右。与巯基棉吸附和吸收液吸收方法的对比显示,该方法具有吸收效果好、多次采样的精密度高、操作简便并且可以再生重复使用等优点。运用该法,对徐家汇等几个地点的大气总汞进行了测定。  相似文献   

2.
测定环境大气悬浮颗粒物中痕量汞,用4种消化液进行对比实验,其中高锰酸钾─硫酸─过硫酸钾混合液消化效果较好,用冷原子荧光测定操作简便,检测下限为0.05μg/L,重复测定9个实际样品,相对标准偏差为11.6%,变异系数为10.4%,添加汞标准回收率为102%。  相似文献   

3.
用玻璃纤维滤筒采集固定污染源废气颗粒物,借助硝酸和氢氟酸的作用,使滤筒和废气颗粒物在160℃下消解,再用原子荧光法测定消解液中总汞。用50%热硝酸溶液处理玻璃纤维滤筒,消除滤筒本底值不一对测定结果的干扰,并优化消解过程,使该方法在0.050μg/L~1.00μg/L范围内线性良好。当采样体积为10 L时,方法检出限为4.5×10~(-5)mg/m~3,空白加标样6次测定结果的RSD为7.2%,加标回收率为87.0%~113%。将该方法用于测定某固定污染源废气颗粒物中总汞,测定值在标准排放限值内。  相似文献   

4.
两次金汞齐—冷原子吸收光谱法测定大气中的痕量气态总汞   总被引:10,自引:2,他引:10  
本文作者在已有仪器的基础上进行简单改装,建立了两次金汞齐—冷原子吸收光谱法测定大气中的微量气态总汞的方法。研究表明,这种方法最低检出限为0.05ng;100μl饱和汞蒸气连续测定结果表明其相对标准偏差<1.41%。在0~2.0ng汞量范围内标准工作曲线线性关系良好。运用该法,对贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院地球化学研究所等地大气气态总汞进行了测定。这种分析方法还可以运用到其它环境样品微量汞的测定。  相似文献   

5.
微波消解ICP-MS法同时测定大气颗粒物中多种痕量元素   总被引:3,自引:0,他引:3  
采用微波消解电感耦合等离子体质谱法同时测定大气颗粒物中13种元素,选择硝酸体系消解20 min,硝酸加入体积为8 mL。Cu、Ni、Cr、Pb、Al、Mg、Mn、Ca在0μg/L~100μg/L,Ag、Ba、Co、Cd、Sn在0μg/L~5.00μg/L范围内线性良好,除Al、Mg、Ca检出限较高外,其他10种元素的检出限为0.07 ng/m3~1.82 ng/m3(按采样体积0.688 m3、定容体积50 mL计),滤膜样品平行测定3次的RSD≤1.2%,加标回收率在92%~108%之间。  相似文献   

6.
水样中痕量汞的分光光度法测定   总被引:3,自引:0,他引:3  
研究了在表面活性剂 Triton X-1 0 0存在下 ,2 ,6—二溴— 4—羧基苯重氮氨基偶氮苯与 Hg2 +的显色反应 ,建立了简便快速测定水样中痕量汞的方法。在 p H为 9.1 0~ 1 0 .2 0时 ,试剂与 Hg2 +形成的配合物的最大吸收峰位于 51 0 nm,Δλ =1 1 0 nm。当汞量在 0~ 1 .0 mg/ L时 ,吸光度与汞量呈线性关系 ,摩尔吸光系数ε=1 .50× 1 0 5 L·mol- 1 · cm- 1 ,并将该法成功地运用于环境水样中汞的测定。  相似文献   

7.
采用DMA-80型直接测汞仪测定工业废水中的痕量汞,优化了干燥时间、分解温度、释放温度等试验条件。方法在0μg/L~600μg/L范围内线性良好,检出限为5.0×10-5mg/L,工业废水样品平行测定的RSD≤0.2%,加标回收率为96.7%~105%。  相似文献   

8.
多环芳烃(PAH)的产生是由于矿物燃料和工业生产过程中其它有机物质的不完全燃烧并以颗粒状态存在于大气中,因为PAH多数涉及到诱变或者致癌的.  相似文献   

9.
用F—732型冷原子吸收测汞仪与改良的FJ-1型金膜富集解吸器组配,对环境样品中痕量总汞进行了测定.系统采用了闭环内气源气路,提高了富集效率和方法的检测限(从0.1μg/L提高到0.003μg/L),不仅可用于高汞含量水样的测定,还可用于清洁样品中痕量汞的测定.  相似文献   

10.
用D2EHPA,TOA,兰133B和煤油乳状液膜体系研究了H^2 g的迁移富集行为,在适宜条件下,H^2 g的迁率率达99.7%以上,在此条件下,许多共存离子如Cu^2 ,Pb^2 ,Zn^2 ,Sn^4 ,Co^2 ,Ni^2 ,Cd^2 ,RE^3 ,Mg^2 ,Al^3 ,Fe^3 和Mn^2 等都不被迁移,只有Hg^2 能与这些离子得到很好的分离,此方法成功地应用于测定水和工业废水中的痕量汞,结果令人满意。  相似文献   

11.
利用DMA-80自动测汞仪直接测定海水中痕量汞   总被引:5,自引:0,他引:5  
采用DMA-80自动测汞仪直接测定海水中的痕量汞,详细介绍了干燥时间、分解温度、释放温度等分析条件的优化选择。试验结果,方法在0.4~400ng范围内线性良好,检出限为2×10-5mg/L,方法操作简单,灵敏度高,结果准确。  相似文献   

12.
建立了全自动烷基汞分析系统测定水源水中烷基汞(甲基汞、乙基汞)的方法。实验采用直接法测定水源水中的烷基汞含量,在0.5~1 000 pg的范围内,甲基汞及乙基汞标准工作曲线线性均良好;取样体积为30 ml时,甲基汞及乙基汞的检出限分别为0.005 ng/L及0.003 ng/L,低于水源水中限量要求;实际水样甲基汞及乙基汞加标回收率为85.9%~89.4%及87.4%~91.3%;标准样品分析合格;测定甲基汞及乙基汞标准样品的相对误差为1.8%及2.4%;运用优化的仪器条件和适当的质控手段,可较好的满足水源水中痕量烷基汞的测定需求。  相似文献   

13.
利用金汞齐富集-便携式测汞仪对环境空气中的气态汞进行直接测定,通过对实验条件的筛选及优化,得到最佳条件。经测试,汞的质量在0~9. 20 ng之间,与对应的强度呈良好的线性关系,标准曲线的相关系数R~2=0. 997 1,RSD=8. 7%和9. 9%,方法检出限为1 ng/m~3。该方法具有简便、快捷、不使用化学试剂等优点,且对环境温度和湿度有一定的抗干扰性,适用于对环境空气气态汞的现场测定。  相似文献   

14.
建立了全自动甲基汞分析仪测定水和废水中甲基汞的方法,对较清洁的地表水和一般废水样品可直接衍生化测定,对基体复杂水样则需蒸馏后再衍生化测定。该法在水样中甲基汞含量为0~1 000 pg范围内线性良好,相关系数r为0.999 7,检出限为0.002 ng/L,标准参考物质测定结果均在参考值范围内,相对标准偏差为1.1%,加标回收率为83.2%~96.6%。该法适用于水及废水中甲基汞的检测。  相似文献   

15.
便携式原子吸收测汞仪对气态汞的监测方法   总被引:1,自引:0,他引:1  
研究和比较便携式原子吸收测汞仪测定气态汞的两种方法,即富集法和直读法。结果显示,富集法在一定范围内具有较好的线性相关性,R20.996,当采气体积为12 L时,检出限为5 ng/m~3,对于高浓度和低浓度气态汞的测定均有较好的稳定性,当气态汞浓度较低时可延长取样时间,增加采样体积,但测定时间较长,适合测定环境空气中的低浓度气态汞。直读法的检出限为0.89μg/m~3,且在测定高浓度含汞废气时,表现出较好的稳定性,同时可在持续排放气态汞条件下进行连续测定并读数,适合测定固定污染源排气中的气态汞。  相似文献   

16.
研究了磺硝酚偶氮若丹宁(NSPAR)与铂的显色反应,在pH为2.5的氯乙酸—氢氧化钠缓冲介质中,吐温-80存在下,NSPAR与铂反应生成2∶1稳定络合物,络合物λmax=540nm,体系摩尔吸光系数?ˉ=6.94×104L·mol-1·cm-1。铂含量在0.05~2.0mg/L内符合比耳定律,本方法用于环境水样中铂含量的测定,结果满意。  相似文献   

17.
胶束增敏光度法测定微量氰化物的研究   总被引:1,自引:0,他引:1  
根据CN^-对丁二酮肟-Ni-曲通X-100体系的增色作用,建立了一种测定微量氰化物的新方法。方法选择性好,操作简便,不需要蒸馏和萃取。CN-含量在0-0.32mg/L内符合比耳定律,用于环境水中氰化物的测定,结果满意。  相似文献   

18.
应用固体测汞仪,采用多标准土壤样品(n20)绘制校准曲线法和单一标准土壤样品绘制校准曲线法,分别对土壤中的汞进行测定。结果表明,两者的方法检出限分别为0.30、1.49 ng,平行样(n=6)的相对标准偏差分别为3.6%~4%、5.4%~9.0%,90 d内的重复性精密度为4.1%,对国家土壤标样进行测定,结果与标准值相符。表明与单一标准土壤样品绘制校准曲线法相比,多标准土壤样品绘制标准曲线法具有更好的精密度、更低的检出限,更强的适用性,并且由于校准曲线长期稳定性,有效缩短土壤中汞的检测周期。  相似文献   

19.
研究了在硫酸介质中、溴化钾催化下 ,碘酸根氧化酸性铬蓝K褪色的最佳条件。其最大吸收波长λmax为 5 2 0nm ,表观摩尔吸光系数为 1 .1× 1 0 4 L·mol- 1·cm- 1,碘浓度在 0~ 3 .6mg/L内呈线性关系。方法用于测定加碘食盐中的碘 ,结果令人满意  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号