首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface runoff water quality in a managed three zone riparian buffer   总被引:2,自引:0,他引:2  
Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.  相似文献   

2.
Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.  相似文献   

3.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

4.
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.  相似文献   

5.
ABSTRACT:  In 2001, the 1.04‐ha Hornbaker wetland in south‐central Pennsylvania was restored by blocking an artificial drainage ditch to increase water storage and hydraulic retention time (HRT). A primary goal was to diminish downstream delivery of nitrate that enters the wetland from a limestone spring, its main source of inflow. Wetland inflow and outflow were monitored weekly for two years to assess nitrate flux, water temperature, pH, and specific conductivity. In Year 2, spring discharge was measured weekly to allow calculation of nitrate loads and hydraulic retention time. Surface runoff was confirmed to be a small fraction of wetland inflows via rainfall‐runoff modeling with TR‐55. The full dataset (n = 102) was screened to remove 13 weeks in which spring discharge constituted < 85% of total inflows because of high precipitation and surface runoff. Over two years (n = 89), mean nitrate‐nitrogen concentrations were 7.89 mg/l in inflow and 3.68 mg/l in outflow, with a mean nitrate removal of 4.19 mg/l. During Year 2 (n = 47), for which nitrate load data were available, the wetland removed an average of 2.32 kg N/day, 65% of the load. Nitrate removal was significantly correlated with HRT, water temperature, and the concentration of nitrate in inflow and was significantly greater during the growing season (5.36 mg/l, 64%) than during the non‐growing season (3.23 mg/l, 43%). This study indicates that hydrologic restoration of formerly drained wetlands can provide substantial water quality benefits and that the hydrologic characteristics of spring‐fed wetlands, in particular, support effective nitrogen removal.  相似文献   

6.
An experimental study was conducted in Tillamook, Oregon, USA, to quantify the effectiveness of edge-of-field vegetated buffers for reducing transport of fecal coliform bacteria (FCB) from agricultural fields amended with dairy cow manure. Installation of vegetated buffers on loamy soils dramatically reduced the bacterial contamination of runoff water from manure-treated pasturelands, but the size of the vegetated buffer was not an important determinant of bacterial removal efficiency. Only 10% of the runoff samples collected from treatment cells having vegetated buffers exhibited FCB concentrations >200 colony forming units (cfu)/100 mL (a common water quality standard value), and the median concentration for all cells containing vegetated buffers was only 6 cfu/100 mL. The presence of a vegetated buffer of any size, from 1 to 25 m, generally reduced the median FCB concentration in runoff by more than 99%. Results for FCB load calculations were similar. Our results suggest that where substantial FCB contamination of runoff occurs from manure-treated pasturelands, it might be disproportionately associated with specific field or management conditions, such as the presence of soils that exhibit low water infiltration and generate larger volumes of runoff or the absence of a vegetated buffer. Buffer size regulations that do not consider such differences might not be efficient or effective in reducing bacterial contamination of runoff.  相似文献   

7.
This literature review addresses how wide a streamside forest buffer needs to be to protect water quality, habitat, and biota for small streams (≤~100 km2 or ~5th order watershed) with a focus on eight functions: (1) subsurface nitrate removal varied inversely with subsurface water flux and for sites with water flux >50 l/m/day (~40% avg base flow to Chesapeake Bay) median removal efficiency was 55% (26‐64%) for buffers <40 m wide and 89% (27‐99%) for buffers >40 m wide; (2) sediment trapping was ~65 and ~85% for a 10‐ and 30‐m buffer, respectively, based on streamside field or experimentally loaded sites; (3) stream channel width was significantly wider when bordered by ~25‐m buffer (relative to no forest) with no additional widening for buffers ≥25 m; (4) channel meandering and bank erosion were lower in forest but more studies are needed to determine the effect of buffer width; (5) temperature remained within 2°C of levels in a fully forested watershed with a buffer ≥20 m but full protection against thermal change requires buffers ≥30 m; (6) large woody debris (LWD) has been poorly studied but we infer a buffer width equal to the height of mature streamside trees (~30 m) can provide natural input levels; (7, 8) macroinvertebrate and fish communities, and their instream habitat, remain near a natural or semi‐natural state when buffered by ≥30 m of forest. Overall, buffers ≥30 m wide are needed to protect the physical, chemical, and biological integrity of small streams.  相似文献   

8.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

9.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

10.
DeWalle, David R., 2010. Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width. Journal of the American Water Resources Association (JAWRA) 46(2):323-333. DOI: 10.1111/j.1752-1688.2010.00423.x Abstract: A theoretical model was developed to explore impacts of varying buffer zone characteristics on shading of small streams using a path-length form of Beer’s law to represent the transmission of direct beam solar radiation through vegetation. Impacts of varying buffer zone height, width, and radiation extinction coefficients (surrogate for buffer density) on shading were determined for E-W and N-S stream azimuths in infinitely long stream sections at 40°N on the summer solstice. Increases in buffer width produced little additional shading beyond buffer widths of 6-7 m for E-W streams due to shifts in solar beam pathway from the sides to the tops of the buffers. Buffers on the north bank of E-W streams produced 30% of daily shade, while the south-bank buffer produced 70% of total daily shade. For N-S streams an optimum buffer width was less-clearly defined, but a buffer width of about 18-20 m produced about 85-90% of total predicted shade. The model results supported past field studies showing buffer widths of 9-11 m were sufficient for stream temperature control. Regardless of stream azimuth, increases in buffer height and extinction coefficient (buffer density) were found to substantially increase shading up to the maximum tree height and stand density likely encountered in the field. Model results suggest that at least 80% shade on small streams up to 6-m wide can be achieved in mid-latitudes with relatively narrow 12-m wide buffers, regardless of stream azimuth, as long as buffers are tall (≈30 m) and dense (leaf area index ≈6). Although wide buffers may be preferred to provide other benefits, results suggest that increasing buffer widths beyond about 12 m will have a limited effect on stream shade at mid-latitudes and that greater emphasis should be placed on the creation of dense, tall buffers to maximize stream shading.  相似文献   

11.
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of nutrient losses from grazed pasture, how those losses are affected by management variables, and how the losses can be minimized. The objective of this study was to measure concentrations of nitrogen (N), phosphorus (P), and solids in runoff from fescue plots and relate those measurements to simulated forage management strategy. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. The experimental treatments applied to the plots varied in terms of forage height and material applied (none, manure, or manure and urine). Runoff was sampled for six simulated rainfall events applied over the summer of 1997 and analyzed for nitrate N (NO3‐N), ammonia N (NH3‐N), total Kjeldahl N (TKN), ortho‐P (PO4‐P), total P (TP), and total suspended solids (TSS). All runoff constituents exhibited dependence on the date of simulated rainfall with generally higher concentrations measured when simulated rainfall followed relatively dry periods. The effects of forage height and manure addition were mixed. Highest runoff N concentrations were associated with the greatest forage heights, whereas highest P concentrations occurred for the least forage heights. Manure/urine addition increased runoff P concentrations relative to controls (no manure/urine) for both the greatest and least forage heights, but runoff N concentrations were increased only for the greatest forage heights. These findings indicate that runoff of N and P is at least as sensitive to amount and proximity of preceding rainfall and suggest that managing forage to stimulate growth and plant uptake can reduce runoff of N.  相似文献   

12.
This study used the stable 15N isotope to quantitatively examine the effects of cutting on vegetative buffer uptake of NO3(-)-N based on the theory that regular cutting would increase N demand and sequestration by encouraging new plant growth. During the summer of 2002, 10 buffer plots were established within a flood-irrigated pasture. In 2003, 15N-labeled KNO3 was applied to the pasture area at a rate of 5 kg N ha(-1) and 99.7 atom % 15N. One-half of the buffer plots were trimmed monthly. In the buffers, the cutting effect was not significant in the first few weeks following 15N application, with both the cut and uncut buffers sequestering 15N. Over the irrigation season, however, cut buffers sequestered 2.3 times the 15N of uncut buffers, corresponding to an increase in aboveground biomass following cutting. Cutting and removing vegetation allowed the standing biomass to take advantage of soil 15N as it was released by microbial mineralization. In contrast, the uncut buffers showed very little change in 15N sequestration or biomass, suggesting senescence and a corresponding decrease in N demand. Overall, cutting significantly improved 15N attenuation from both surface and subsurface water. However, the effect was temporally related, and only became significant 21 to 42 d after 15N application. The dominant influence on runoff water quality from irrigated pasture remains irrigation rate, as reducing the rate by 75% relative to the typical rate resulted in a 50% decrease in total runoff losses and a sevenfold decrease in 15N concentration.  相似文献   

13.
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.  相似文献   

14.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

15.
Previous studies have observed higher levels of soluble nutrients leaving vegetative buffers than entering them, suggesting that the buffers themselves are acting as a source rather than a sink by releasing previously stored nutrients. This study used 98 atom % (15)N-labeled KNO(3) at a rate of 5 kg ha(-1) to quantify buffer efficiency for sequestering new inputs of NO(-)(3)-N in an extensively grazed irrigated pasture system. Buffer treatments consisted of an 8-m buffer, a 16-m buffer, and a nonbuffered control. Regardless of the form of runoff N (NO(-)(3), NH(+)(4), or dissolved organic nitrogen [DON]), more (15)N was lost from the nonbuffered treatments than from the buffered treatments. The majority of the N attenuation was by vegetative uptake. Over the course of the study, the 8-m buffer decreased NO(-)(3)-(15)N load by 28% and the 16-m buffer decreased load by 42%. For NH(+)(4)-(15)N, the decrease was 34 and 48%, and for DON-(15)N, the decrease was 21 and 9%. Although the buffers were effective overall, the majority of the buffer impact occurred in the first four weeks after (15)N application, with the buffered plots attenuating nearly twice as much (15)N as the nonbuffered plots. For the remainder of the study, buffer effect was not as marked; there was a steady release of (15)N, particularly NO(-)(3)- and DON-(15)N, from the buffers into the runoff. This suggests that for buffers to be sustainable for N sequestration there is a need to manage buffer vegetation to maximize N demand and retention.  相似文献   

16.
Abstract: Being able to identify riparian sites that function better for nitrate removal from groundwater is critical to using efficiently the riparian zones for water quality management. For this purpose, managers need a method that is quick, inexpensive, and accurate enough to enable effective management decisions. This study assesses the precision and accuracy of a simple method using three ground water wells and one measurement date for determining nitrate removal characteristics of riparian buffer zones. The method is a scaled‐down version of a complex field research method that consists of a large network of wells and piezometers monitored monthly for over two years. Results using the simplified method were compared to those from the reference research method on a date‐by‐date basis on eight sites covering a wide range of hydrogeomorphic settings. The accuracy of the three‐well, 1 day measurement method was relatively good for assessing nitrate concentration depletion across riparian zones, but poor for assessing the distance necessary to achieve a 90% nitrate removal and for estimating water and nitrate fluxes compared to the reference method. The simplified three‐well method provides relatively better estimates of water and nitrate fluxes on sites where ground‐water flow is parallel to the water table through homogeneous aquifer material, but such conditions may not be geographically widespread. Despite limited overall accuracy, some parameters that are estimated using the simplified method may be useful to water resource managers. Nitrate depletion information may be used to assess the adequacy of existing buffers to achieve nitrate concentration goals for runoff. Estimates of field nitrate runoff and buffer removal fluxes may be adequate for prioritizing management toward sites where riparian buffers are likely to have greater impact on stream water quality.  相似文献   

17.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

18.
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.  相似文献   

19.
Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones.  相似文献   

20.
Few studies have measured removal of pollutants by restored wetlands that receive highly variable inflows. We used automated flow-proportional sampling to monitor the removal of nutrients and suspended solids by a 1.3-ha restored wetland receiving unregulated inflows from a 14-ha agricultural watershed in Maryland, USA. Water entered the wetland mainly in brief pulses of runoff, which sometimes exceeded the 2500-m3 water holding capacity of the wetland. Half of the total water inflow occurred in only 24 days scattered throughout the two-year study. Measured annual water gains were within 5% of balancing water losses. Annual removal of nutrients differed greatly between the two years of the study. The most removal occurred in the first year, which included a three-month period of decreasing water level in the wetland. In that year, the wetland removed 59% of the total P, 38% of the total N, and 41% of the total organic C it received. However, in the second year, which lacked a drying period, there was no significant (p > 0.05) net removal of total N or P, although 30% of the total organic C input was removed. For the entire two-year period, the wetland removed 25% of the ammonium, 52% of the nitrate, and 34% of the organic C it received, but there was no significant net removal of total suspended solids (TSS) or other forms of N and P. Although the variability of inflow may have decreased the capacity of the wetland to remove materials, the wetland still reduced nonpoint-source pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号