首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncertainty in future water supplies for the Phoenix Metropolitan Area (Phoenix) are exacerbated by the near certainty of increased, future water demands; water demand may increase eightfold or more by 2030 for some communities. We developed a provider-based water management and planning model for Phoenix termed WaterSim 4.0. The model combines a FORTRAN library with Microsoft C# to simulate the spatial and temporal dynamics of current and projected future water supply and demand as influenced by population demographics, climatic uncertainty, and groundwater availability. This paper describes model development and rationale. Water providers receive surface water, groundwater, or both depending on their portfolio. Runoff from two riverine systems supplies surface water to Phoenix while three alluvial layers that underlie the area provide groundwater. Water demand was estimated using two approaches. One approach used residential density, population projections, water duties, and acreage. A second approach used per capita water consumption and separate population growth estimates. Simulated estimates of initial groundwater for each provider were obtained as outputs from the Arizona Department of Water Resources (ADWR) Salt River Valley groundwater flow model (GFM). We compared simulated estimates of water storage with empirical estimates for modeled reservoirs as a test of model performance. In simulations we modified runoff by 80%-110% of the historical estimates, in 5% intervals, to examine provider-specific responses to altered surface water availability for 33 large water providers over a 25-year period (2010-2035). Two metrics were used to differentiate their response: (1) we examined groundwater reliance (GWR; that proportion of a providers' portfolio dependent upon groundwater) from the runoff sensitivity analysis, and (2) we used 100% of the historical runoff simulations to examine the cumulative groundwater withdrawals for each provider. Four groups of water providers were identified, and discussed. Water portfolios most reliant on Colorado River water may be most sensitive to potential reductions in surface water supplies. Groundwater depletions were greatest for communities who were either 100% dependent upon groundwater (urban periphery), or nearly so, coupled with high water demand projections. On-going model development includes linking WaterSim 4.0 to the GFM in order to more precisely model provider-specific estimates of groundwater, and provider-based policy options that will enable "what-if" scenarios to examine policy trade-offs and long-term sustainability of water portfolios.  相似文献   

2.
ABSTRACT: A water supply network optimization model called MODSIM3 is presented as a decision-support tool for aiding city staff in determining how best to utilize and exchange existing and potential water supplies with other users in a river basin. The model is applied to the City of Fort Collins, Colorado, water supply system as a means of determining optimum ways the City can utilize direct flow rights, storage rights, and exchangeable waters from various sources. Results clearly confirm both the benefits of the use of exchanges and the value of MODSIM3 as a water supply planning and management tool.  相似文献   

3.
ABSTRACT: The population in the Jemez y Sangre Water Planning Region of New Mexico has reached the point at which the demand for water exceeds available supplies, particularly when precipitation is below average, as has frequently occurred in recent years. The desire to develop a sustainable water supply that relies on renewable supplies in wet years and preserves the water in storage for times of drought motivated a diverse set of stakeholders in the region to participate in regional water planning. The planning effort culminated in development of the Jemez y Sangre Regional Water Plan, which was adopted by municipal and county governments in the region. The plan assesses and compares water supply and demand in the region and recommends alternatives for protecting and restoring the existing water supply and addressing the pending gap between supply and demand anticipated by the year 2060. To convey to decision makers the alternatives available to solve the future water shortage, option charts were developed to portray the amount of water that could be obtained or conserved through their implementation. The option charts show that the projected gap between supply and demand cannot be met through one alternative only, but will require a combination of alternatives.  相似文献   

4.
The use of linear programming as a planning tool for determining the optimal long-range development of an urban water supply system was explored. A stochastic trace of water demand was synthesized and used as an input to the model. This permitted evaluating the feasibility of imposing demand restrictions as an effective cost reduction mechanism. The City of Lincoln, Nebraska, was used as the urban model. The fundamental problem was to allocate limited water supplies from several sources to an urban load center to minimize costs and comply with system constraints. The study period covered twenty years, and findings indicate the planning direction for stage development during this period. Sensitivity analyses were performed on cost coefficients and demands. Thirteen sources were included in the initial computations. Conclusions were that linear programming and generated demand traces are useful tools for both short- and long-term urban water supply planning. Lowering peak demands results in long-range development of fewer sources of supply and more economic and efficient use of the supplies developed.  相似文献   

5.
Population growth in the Southeast has driven withdrawals for municipal water beyond the limits of local supplies. With few options left for development of virgin sources, a number of urban areas are looking toward demand management and additional supplies by reallocating storage in reservoirs that were built primarily or in part for hydropower. Hydropower has become a lesser part of the mix of energy sources, and the question arises as to value of water for that purpose relative to its value for municipal use. Three cases are used to examine the issue. Effects of withdrawal for municipal water supply on output of electric energy are estimated. Benefits of foregone energy are evaluated using the least cost alternative for replacement, and benefits for municipal water are estimated using costs for development of new sources. Benefits for use as municipal water are found to be considerably higher than benefits for hydroelectric energy at existing prices, even higher than the least cost alternative for replacement. Given the spatial distribution of the cases, that finding would appear to hold in general across the region.  相似文献   

6.
The Bow River Basin is a cornerstone of Alberta's development. In 2010, stakeholders representing interests from agriculture, municipalities, environment, and more formed the Bow River Project Research Consortium to help determine the potential for improving the operations in the basin. At present, upstream reservoirs are operated primarily for hydropower, whereas downstream reservoirs are operated for irrigation. Through Collaborative Modeling for Decision Support the stakeholders were able to develop a new method for operating the system that would dramatically improve environmental performance. The main components of the new operating strategy called for: purchase or setting aside of a small amount of storage volume in the power reservoirs; a set of rules for releases from that storage; an agreement by the major irrigation districts with the largest water licenses to utilize their ability to shift deliveries to and from their large offstream storage reservoirs to allow for increased instream flows, and to allow junior water license holders (mainly municipal and industrial supplies) an uninterrupted water supply; limitations of reservoir fluctuations to improve inreservoir habitat for fisheries; and increased minimum flows throughout the system leading to improved environmental outcomes. Costs of this strategy were minimal, impacts on power revenue were estimated at <US$2 million/yr on average. Compensatory arrangements should be possible.  相似文献   

7.
Since its implementation in 2015, the Middle Route of the South‐to‐North Water Diversion Project (MR‐SNWDP) has transferred an average of 45 billion cubic meters of surface water per year from the Yangtze River in southern China to the Yellow River and Hai River Basin in northern China, but how that supply is able to cope with droughts under different scenarios has not been explored. In this study, using the water demand for 2020 as the guaranteed water target, a Water Evaluation and Planning system was used to simulate available water supplies in Beijing under different drought scenarios. In the case of a single‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 16.7%; with the MR‐SNWDP, this ratio reduced to 7.3%. In the case of a multi‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 25.3%; with the MR‐SNWDP, this ratio reduced to 7.4% and domestic water supply was improved. Our research suggests that to prepare for multi‐year drought in the Beijing area, the SNWDP supports increased supplies to the region that would mitigate drought effects. This study is, however, mostly focused on water supply provision to Beijing and does not comprehensively evaluate other potential impacts. Multiple additional avenues could be pursued that include replenishing groundwater, increasing reservoir storage, and water conservation methods. Further research is needed to explore the relative costs and benefits of these approaches.  相似文献   

8.
ABSTRACT: In many of the limited water resource areas of the western United States most water supplies have been put to beneficial uses. Energy, a fast expanding high-priority water use, is making challenging demands for these limited supplies. Can water supplies be stretched, supplemented, or redirected so that present uses can be maintained and energy water needs satisfied? The Bureau of Reclamation is investigating innovative methods of water management, reregulation, and use to meet these demands. Related programs under study include potentials for: development of additional hydroelectric power, installation of low-head turbines in western water courses, utilization of pumped storage and underground storage, use of geo-thermal heat, extension of water supplies through more efficient irrigation systems and practices, and weather modification.  相似文献   

9.
This paper reviews progress on urban storm water management and pollution control, with emphasis on non- and low-structurally intensive techniques along with the total system approach encompassing control-treatment. Many of the U.S. Environmental Protection Agency's demonstration-evaluation projects are presented to exemplify: Land Management Techniques, i.e., land use planning, best use of natural drainage, dual use of retention and drainage facilities required for flood control designed concurrently or retrofitted for pollution control, porous pavement, surface sanitation, and chemical use control; Collection Systems Control, i.e., catchbasin cleaning, flow regulators (including swirl and helical devices), and the new concepts of elimination or reduction of unauthorized cross-connections, in-channel/conduit storage and/or other forms of storage for bleed-back to existing treatment plants; Storage including in-receiving water storage; Treatment, i.e., physical/chemical, disinfection, and a treatment-control planning and design guidebook; Sludge and Solids Residue from Treatment; and Integrated Systems, i.e., storage/treatment, dual-use wet-weather flow/dry-weather flow facilities, and reuse of stormwater for nonpotable purposes. Recommendations for the future in the areas of: control based on receiving water impacts, toxics characterization and their control, sewer system cross-connections, integrated stormwater management, and institutional/sociological/economic conflicts are also presented.  相似文献   

10.
ABSTRACT: Public awareness of the importance of protecting the nation's water supplies is growing. Recent studies have shown a substantial increase in the perceived value of protecting water supplies for future use. In the Northeast, much of the water supply comes from ground water. This paper examines three test cases, each with different approaches for using geographic information systems (GIS) for ground water protection planning. In Wellfleet, Massachusetts, build-out scenarios were used to support regulatory and land acquisition decisions for siting a public water supply well. In Hadley, Massachusetts, the focus was on a decision support model for septic suitability assessment in support of regulatory efforts and infrastructure expansion. For Cortland County, New York, an interactive graphic user interface was created to facilitate the manipulation and recombination of a large volume of data by county officials to target ground water pollution prevention efforts. As personal computers become more powerful and inexpensive, and GIS data become more readily available, community and county governments are turning to GIS as a tool for developing comprehensive resource protection plans. Once appropriate data are input, a GIS can effectively and efficiently be used to derive outcomes of various land use plans and regulations.  相似文献   

11.
ABSTRACT As urban expansion outstrips water supplies, the usual solution is to build pipelines to bring in water from sources farther afield. Such water supplies may act as either a leader of urban development or as a follower. In either case, this engineering approach to the provision of water has fostered less than optimal utilization of regional water and land resources for urban growth. More efficient utilization of these resources is achieved when water supply development and urban growth planning are conjoint activities. Water supply planners and land use planners, working together, are able to generate and evaluate the full range of urban development options, including water demand management through conservation. Preferred regional growth plans are achieved using the best mix of water supply and urban growth. The result is a reduced rate of water supply development and a reduction of urban expansion on prime lands. This partnership approach is demonstrated for the Calgary Region under two levels of water conservation.  相似文献   

12.
ABSTRACT: Individuals involved in state water resource planning generally have avoided any development of a comprehensive public water planning investment model that would set the stage for quantitative recommendations of a “what ought to be” tone for future water strategies. Three New Hampshire towns were selected to illustrate the usefulness of a mixed integer multiperiod programming model that utilizes hydrologic and economic data for identifying the discounted least cost of water supply, distribution, and scheduling. Comparisons are made regarding the feasibility of a regional water system approach versus independent “town by town” water supplies that presently prevail. To analyze the sensitivity of optimal water planning solutions to projected water demands, variations in these demands are made.  相似文献   

13.
In urbanizing areas underlain by crystalline rocks an inventory of the usable ground water should form an important element in the land-use planning process. Land-use decisions are most often made upon water-well yield data alone, but these data do not address the inventory question. A method utilizing local geology, stream lowflow characteristics, and pumping test data permitted outlining portions of Wake County, North Carolina, which are more favorable and those which are less favorable for ground water supply development. Information from state-required 24-hour pumping tests on 232 wells was supplemented by information from an additional 100 wells whose initial yields were determined by shorter pumping tests. Comparison of the ground water inventory values on a per acre or per square mile basis with average water use at various residential densities provides information useful to the responsible political body as it decides about population density distribution and the need for surface water supplies. For Wake Country an average density of one residential unit per acre appears generally permissible before overdraft of the ground water supplies becomes a significant risk. By utilizing the ground water inventory and patterns of ground water yields from various rock types, county officials can maximize the effectiveness of public facilities funds. The technique appears useful for other parts of the Piedmont region of the southeastern United States.  相似文献   

14.
As freshwater resources become more scarce and water management becomes more contentious, new planning approaches are essential to maintain ecologic, economic, and social stability. One technique involves cooperative modeling in which scientists and stakeholders work together to develop a computer simulation model to assist in planning efforts. In the Middle Rio Grande region of New Mexico, where water management is hotly debated, a stakeholder team used a system dynamics approach to create a computer simulation model to facilitate producing a regional plan. While the model itself continues to be valuable, the process for creating the model was also valuable in helping stakeholders jointly develop understanding of and approaches to addressing complex issues. In this paper, the authors document results from post‐project interviews designed to identify strengths and weaknesses of cooperative modeling; to determine if and how the model facilitated the planning process; and to solicit advice for others considering model aided planning. Modeling team members revealed that cooperative modeling did facilitate water planning. Interviewees suggested that other groups try to reach consensus on a guiding vision or philosophy for their project and recognize that cooperative modeling is time intensive. The authors also note that using cooperative modeling as a tool to build bridges between science and the public requires consistent communication about both the process and the product.  相似文献   

15.
Planners and water managers seek to be adaptive to handle uncertainty through the use of planning approaches. In this paper, we study what type of adaptiveness is proposed and how this may be operationalized in planning approaches to adequately handle different uncertainties. We took a comparative case study approach to study two planning approaches: the water diplomacy framework (WDF) and adaptive delta management (ADM). We found that the approaches differ in their conceptualization of uncertainty and show that different types of adaptiveness are used in the approaches. While WDF builds on collaborative adaptive management as a set of ongoing adjustments and continuous learning to handle uncertainty, ADM deliberately attempts to anticipate future adaptations through a set of tools which allows for seizing opportunities and avoiding lock-in and lock-out mechanisms. We conclude that neither of the approaches is fully able to account for different uncertainties. Both approaches may benefit from specific insights in what uncertainty and adaptiveness entail for the development of water management plans.  相似文献   

16.
Roof rainwater harvesting (RWH) has the potential to augment water supplies for urban and suburban uses throughout the United States (U.S.). Studies of the performance of RWH at the building and city scales in the U.S. are available, but a countrywide overview of the potential performance of RWH at the county scale has not been done before. Three approaches were taken: (1) assess the viability of RWH in terms of the rainfall that could be captured in relation to the water demand in each county (excluding agriculture), (2) evaluate the performance of a “typical” domestic RWH system across all counties with metrics related to its ability to supply the potable and nonpotable demand, and (3) evaluate the effect of adding a 50% rainwater reuse component to the analysis. We find RWH could be a viable supplemental water source in the U.S., particularly in counties of the Pacific Northwest, Central, and Eastern regions (percent demand covered >50%). Low population density counties have the potential to meet their annual water needs with RWH, while high‐density counties could only source a small portion (~20%) of their annual demand with RWH. Typical RWH systems in counties in the Central and Eastern U.S. performed better than in Western counties. Adding a reuse component can be a key factor in making RWH attractive in many areas of the country. This work can inform future water infrastructure investment and planning in the U.S.  相似文献   

17.
Rainfall and runoff in the Tucson, Arizona, urban area can be used to augment residential and municipal water supplies. Residential rainfall-harvesting systems include a catchment surface, collection and concentration components, separation and treatment units, storage capacity and distribution capability. A system to control runoff can divert water from urban washes for use in parks or other landscaped areas or can be used to enhance recharge to groundwater reservoirs. A reduction in flood hazards or peaks is a concurrent benefit of controlling and diverting runoff.  相似文献   

18.
Since 1961, control over water-supply interference problems in the Province of Ontario has been provided under The Ontario Water Resources Commission Act. A section of The Act requires persons taking more than 10,000 imperial gallons per day of water for purposes other than domestic, stock or fire-fighting to have a permit and to take the water in accordance with specified terms and conditions. Construction of some new wells, sewers, and roads to meet the needs of urban development has caused interference with both ground- and surface-water supplies. In cases of serious interference, the Commission has required that steps be taken to restore water supplies or prevent continued interference. Two cases are described where municipalities in the Toronto area restored supplies to overcome serious interference with several private wells and streamflow during testing and operation of a 500-imperial gpm municipal well adjacent to a normally effluent stream, and varying degrees of interference with private wells caused by dewatering at rates up to 2000-imperial gpm for the installation of a trunk sewer.  相似文献   

19.
ABSTRACT: The water budget computation in shallow lakes is complicated because marsh vegetation can transpire large quantities of lake water. Thus, a model including the marsh zone evapotranspiration (WET) was developed to compute the water budget for Lake Okeechobee. Three periods of testing (1969–74), planning (1963–74), and recorded period (1952–77) were used to compare the differences of the sum of storage deviation between the WET and conventional methods (WOET). Results of the WOET method showed that the sum of stage deviations were 87.42 cm (2.868 ft.), 231.80 cm (7.605 ft.), and 284.50 cm (9.333 ft.) in the testing, planning, and recorded periods, respectively. These stage deviations are equivalent in the same order to 29, 76, and 93 percent of the lake volume. In general, the WET method not only was applicable to compute the water budget for the lake but also reduced the sum of storage deviation by about 42, 31, and 49 percent, respectively, in those three periods. The storage deviation in WET method was reduced on an average to about 2 percent each year in all three periods, and the deviations were scattered more randomly than in WOET.  相似文献   

20.
ABSTRACT: Major parameters and optimum storage volumes of rooftop rain water harvesting systems (RRWHSs) have not been investigated in detail in Taiwan. Accordingly, the four major parameters of RRWHSs were herein identified and elucidated using a simulation method. Because the performance of the RRWHSs is sensitive to the runoff coefficient, a field experiment was conducted to determine the runoff coefficient more precisely for various types of roofs. A simulation model including production theory was developed and employed to estimate the most cost effective combination of the roof area and the storage capacity that best supplies a specific volume of water. Consequently, the expansion path of optimum solutions for different volumetric reliability of water supply can be determined. Additionally, the method based on the marginal rate of substitution can be used for determining the rational volumetric reliability. The procedures developed herein constitute an effective tool for preliminarily estimating the most satisfactory storage capacity of any specific roof area and for determining the rational reliability of a corresponding water supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号