共查询到20条相似文献,搜索用时 15 毫秒
1.
Laura Jean Wilcox Robert S. Bowman Nabil G. Shafike 《Journal of the American Water Resources Association》2007,43(6):1595-1603
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree. 相似文献
2.
Ronald T. Green James R. Winterle James D. Prikryl 《Journal of the American Water Resources Association》2008,44(4):887-901
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer. 相似文献
3.
D.Q. Kellogg A.J. Gold P.M. Groffman M.H. Stolt K. Addy 《Journal of the American Water Resources Association》2008,44(4):1024-1034
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions. 相似文献
4.
Emma C. Hardison Michael A. O’Driscoll John P. DeLoatch Robert J. Howard Mark M. Brinson 《Journal of the American Water Resources Association》2009,45(4):1032-1046
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings. 相似文献
5.
Amir P. Nejadhashemi Joseph M. Sheridan Adel Shirmohammadi Hubert J. Montas 《Journal of the American Water Resources Association》2007,43(3):744-756
Abstract: Evaluating the relative amounts of water moving through the different components of the hydrological cycle is required for precise management and planning of water resources. An important aspect of this evaluation is the partitioning of streamflow into surface (quick flow) and base‐flow components. A prior study evaluated 40 different approaches for hydrograph‐partitioning on a field scale watershed in the Coastal Plain of the Southeastern United States and concluded that the Boughton’s method produced the most consistent and accurate results. However, its accuracy depends upon the proper estimation of: (1) the end of surface runoff, and (2) the fraction factor (α) that is function of many physical and hydrologic characteristics of a watershed. Proper identification of the end of surface runoff was accomplished by using a second derivative approach. Applying this approach to 12 years of separately measured surface and subsurface flow data from a field scale watershed (study area) proved to be accurate for 87% of the time. Estimation of the α value was accomplished in this study using two steps: (1) alpha was fitted to individual hydrographs: and, (2) a regression equation that determines these alpha values based on climatological factors (e.g., rainfall, evapotranspiration) was developed. Using these strategies improved the streamflow partitioning method’s performance significantly. 相似文献
6.
Philippe G. Vidon Alan R. Hill 《Journal of the American Water Resources Association》2006,42(4):1099-1112
ABSTRACT: This study evaluates a conceptual model developed for riparian zones in Ontario, Canada, that links landscape hydrogeological characteristics to riparian ground water hydrology and nitrate removal efficiency. Data from a range of riparian sites in the United States and Europe suggest that the riparian zone types identified in the model are consistent with patterns of riparian hydrology and nitrate flux and removal in many humid temperate landscapes. These data also support the view that a riparian width of less than 20 m is often sufficient for effective nitrate removal unless riparian sediments are coarse grained or nitrate transport occurs mainly in surface‐fed ground water seeps. This study assesses the possibility of using topographic, soil, surficial geology, and vegetation maps to determine landscape attributes linked by the model to riparian zone hydrological functioning and nitrate removal efficiency. Although mappable data can help in determining broad classes of riparian zones, field visits are necessary to determine non‐mappable riparian attributes such as seeps, organic horizons, and permeable sediment depth in the riparian zone. This research suggests that the conceptual model could be used for landscape management purposes in most temperate landscapes with minor modifications and that the hydrological component of the model could be adapted for contaminants other than nitrate. 相似文献
7.
Warren A. Gebert Mandy J. Radloff Ellen J. Considine James L. Kennedy 《Journal of the American Water Resources Association》2007,43(1):220-236
Abstract: The average annual base flow/recharge was determined for streamflow‐gaging stations throughout Wisconsin by base‐flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970‐99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow‐gaging stations that had long‐term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple‐regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low‐flow partial‐record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base‐flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. 相似文献
8.
Jonathan T. Angier Gregory W. McCarty 《Journal of the American Water Resources Association》2008,44(2):367-380
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research. 相似文献
9.
A. Jason Hill Vincent S. Neary 《Journal of the American Water Resources Association》2007,43(6):1373-1382
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland. 相似文献
10.
Gary S. Johnson Bryce A. Contor Donna M. Cosgrove 《Journal of the American Water Resources Association》2008,44(1):27-36
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden. 相似文献
11.
Jenny L. Jasperson Karen B. Gran Joseph A. Magner 《Journal of the American Water Resources Association》2018,54(5):1109-1126
Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources. 相似文献
12.
Courtney E. Moore Steven P. Loheide II Christopher S. Lowry Jessica D. Lundquist 《Journal of the American Water Resources Association》2014,50(4):1033-1050
Vegetation in subalpine meadows in the Sierra Nevada Mountains is particularly vulnerable to lowering of groundwater levels because wet meadow vegetation is reliant upon shallow groundwater during the dry summer growing season. These ecosystems are especially vulnerable to channel incision as meadow aquifers are hydrologically connected to tributaries, and many have not yet recovered from previous anthropogenic influences. While instream restoration projects have become a common approach, lack of postrestoration monitoring and communication often result in a trial‐and‐error approach. In this study we demonstrate that preimplementation modeling of possible instream restoration solutions, chosen to raise stream stage and subsequently groundwater levels, is a useful tool for evaluating and comparing potential channel modifications. Modeling allows us to identify strategic locations and specific methods. Results show additional sediment depth and roughness on tributaries along with introduced woody debris (simulated by high roughness) on the Tuolumne River are the most effective means of raising stream stage. Results demonstrate that restoration efforts are most efficient in tributary streams. Managers and planners can more efficiently direct resources while minimizing the potential for negative impacts or failed restoration projects by modeling the possible effects of multiple restoration scenarios before implementation. 相似文献
13.
Wayne M. Wendland 《Journal of the American Water Resources Association》2001,37(3):685-693
ABSTRACT: Illinois data from 168 months (1986–1999) were investigated to determine the responses of surface‐water and ground‐water resources to precipitation. Such responses were generally within the month of occurrence or one to two months later, with recovery being reached another one to three months into the future, depending on season of the year. Although the drought of 1988 immediately impacted surface‐water and ground‐water resources, the time of recovery was substantially longer compared to those of individual dry months, generally continuing for several months. The extremely wet summer of 1993 resulted in elevated responses in water resources almost immediately, but in this instance continued through the following fall and winter, into the spring of 1994. 相似文献
14.
Alan Mair Ali Fares Aly El‐Kadi 《Journal of the American Water Resources Association》2007,43(1):148-159
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow. 相似文献
15.
C. Dreps A.L. James G. Sun J. Boggs 《Journal of the American Water Resources Association》2014,50(4):1063-1079
In the Piedmont of North Carolina, a traditionally water‐rich region, reservoirs that serve over 1 million people are under increasing pressure due to naturally occurring droughts and increasing land development. Innovative development approaches aim to maintain hydrologic conditions of the undisturbed landscape, but are based on insufficient target information. This study uses the hydrologic landscape concept to evaluate reference hydrology in small headwater catchments surrounding Falls Lake, a reservoir serving Raleigh and the greater Triangle area. Researchers collected one year of detailed data on water balance components, including precipitation, evapotranspiration, streamflow, and shallow subsurface storage from two headwater catchments representative of two hydrologic landscapes defined by differences in soils and topographic characteristics. The two catchments are similar in size and lie within the same physiographic region, and during the study period they showed similar water balances of 26‐30% Q, ?4 to 5% ΔS, 59‐65% evapotranspiration, and 9‐10% G. However, the steeper, more elevated catchment exhibited perennial streamflow and nongrowing season runoff ratios (Q/P) of 33%, whereas the flat, low‐lying stream was drier during the growing season and exhibited Q/P ratios of 52% during the nongrowing season. A hydrologic landscape defined by topography and soil characteristics helps characterize local‐scale reference hydrology and may contribute to better land management decisions. 相似文献
16.
James C. Schneider David P. Ahlfeld Charles P. Spalding 《Journal of the American Water Resources Association》2017,53(3):697-706
A method is proposed for the equitable allocation of impacts of groundwater pumping on streamflow. The method is intended for cases in which the pumping activity of multiple entities has impacts on streamflow and these impacts are computed by perturbation. It is shown that when the response of streamflow to pumping is nonlinear, simple methods for impact calculation can fail. The proposed method is developed for the case when there are four entities that impact streamflow. The method relies on the calculation of impacts by perturbation of the simulation model from different base pumping levels. When four entities are evaluated, 16 runs of the simulation model are required. It is shown the proposed method produces estimated impacts for each individual entity that are equitable because they meet the requirement that the impacts of each entity sum to the total impacts of all entities acting together and the impacts attributed to each entity do not depend on the order of calculation. A brief example demonstrates the approach. 相似文献
17.
Stephen P. Opsahl Scott E. Chapal David W. Hicks Christopher K. Wheeler 《Journal of the American Water Resources Association》2007,43(5):1132-1141
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined. 相似文献
18.
Mark M. Wilsnack Victor P. Kelson Jack F. Wittman 《Journal of the American Water Resources Association》2005,41(1):67-76
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer. 相似文献
19.
Robert W. Dudley Glenn A. Hodgkins 《Journal of the American Water Resources Association》2013,49(5):1198-1212
Water‐level trends spanning 20, 30, 40, and 50 years were tested using month‐end groundwater levels in 26, 12, 10, and 3 wells in northern New England (Maine, New Hampshire, and Vermont), respectively. Groundwater levels for 77 wells were used in interannual correlations with meteorological and hydrologic variables related to groundwater. Trends in the contemporary groundwater record (20 and 30 years) indicate increases (rises) or no substantial change in groundwater levels in all months for most wells throughout northern New England. The highest percentage of increasing 20‐year trends was in February through March, May through August, and October through November. Forty‐year trend results were mixed, whereas 50‐year trends indicated increasing groundwater levels. Whereas most monthly groundwater levels correlate strongly with the previous month's level, monthly levels also correlate strongly with monthly streamflows in the same month; correlations of levels with monthly precipitation are less frequent and weaker than those with streamflow. Groundwater levels in May through August correlate strongly with annual (water year) streamflow. Correlations of groundwater levels with streamflow data and the relative richness of 50‐ to 100‐year historical streamflow data suggest useful proxies for quantifying historical groundwater levels in light of the relatively short and fragmented groundwater data records presently available. 相似文献
20.
Mark Ross Jeffrey Geurink Ahmed Said Alaa Aly Patrick Tara 《Journal of the American Water Resources Association》2005,41(5):1013-1025
In 1988, the Florida Institute of Phosphate Research (FIPR) funded project to develop an advanced hydrologic model for shallow water table systems. The FIPR hydrologic model (FHM) was developed to provide an improved predictive capability of the interactions of surface water and ground water using its component models, HSPF and MODFLOW. The Integrated Surface and Ground Water (ISGW) model was developed from an early version of FHM and the two models were developed relatively independently in the late 1990s. Hydrologic processes including precipitation, interception, evapotranspiration, runoff, recharge, streamflow, and base flow are explicitly accounted for in both models. Considerable review of FHM and ISGW and their applications occurred through a series of projects. One model evolved, known as the Integrated Hydrological Model IHM. This model more appropriately describes hydrologic processes, including evapotranspiration fluxes within small distributed land‐based discretization. There is a significant departure of many IHM algorithms from FHM and ISGW, especially for soil water and evapotranspiration (ET). In this paper, the ET concepts in FHM, ISGW, and IHM will be presented. The paper also identifies the advantages and data costs of the improved methods. In FHM and IHM, ground water ET algorithms of the MODFLOW ET package replace those of HSPF (ISGW used a different model for ground water ET). However, IHM builds on an improved understanding and characterization of ET partitioning between surface storages, vadose zone storage, and saturated ground water storage. The IHM considers evaporative flux from surface sources, proximity of the water table to land surface, relative moisture condition of the unsaturated zone, thickness of the capillary zone, thickness of the root zone, and relative plant cover density. The improvements provide a smooth transition to satisfy ET demand between the vadose zone and deeper saturated ground water. While the IHM approach provides a more sound representation of the actual soil profile than FHM, and has shown promise at reproducing soil moisture and water table fluctuations as well as field measured ET rates, more rigorous testing is necessary to understand the robustness and/or limitations of this methodology. 相似文献