首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   

2.
Fourteen streams in the Sierra Nevada in the USA were sampled to determine whether diversions of streamflow for hydroelectric development had caused significant changes in riparian vegetation. Several streams showed significant differences in vegetation cover, community composition, or community structure between pairs of diverted and undiverted reaches. On some streams, environmental conditions rather than streamflow diversions may have been responsible for vegetation differences. Streams in the Sierra Nevada respond individualistically to diversions. Prediction of vegetation responses must take into consideration environmental characteristics of specific stream reaches.  相似文献   

3.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   

4.
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow.  相似文献   

5.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

6.
Storms in urban areas route heat and other pollutants from impervious surfaces, via drainage networks, into streams with well‐described negative consequences on physical structure and biological integrity. We used heat pulses associated with urban storms as a tracer for pavement‐derived stormwater inputs, providing a conservative estimate of the frequency with which these pollutants are transported into and through protected stream reaches. Our study was conducted within a 1.5‐km reach in Durham, North Carolina, whose headwaters begin in suburban stormwater pipes before flowing through 1 km of protected, 100‐year‐old forest. We recorded heat‐pulse magnitudes and distances travelled downstream, analyzing how they varied with storm and antecedent flow conditions. We found heat pulses >1°C traveled more than 1 km downstream of urban inputs in 11 storms over one year. This best‐case management scenario of a reach within a protected forest shows that urban impacts can travel far downstream of inputs. Air temperature and flow intensity controlled heat‐pulse magnitude, while heat‐pulse size, mean flow, and total precipitation controlled dissipation distance. As temperatures and sudden storms intensify with climate change, heat‐pulse magnitude and dissipation distance will likely increase. Streams in urbanized landscapes, such as Durham municipality, where 98.9% of streams are within 1 downstream km of stormwater outfalls, will be increasingly impacted by urban stormwaters.  相似文献   

7.
Procopio, Nicholas A., 2010. Hydrologic and Morphologic Variability of Streams With Different Cranberry Agriculture Histories, Southern New Jersey, United States. Journal of the American Water Resources Association (JAWRA) 46(3):527-540. DOI: 10.1111/j.1752-1688.2010.00432.x Abstract: The creation of reservoirs and the modification of stream channels are common practices used to facilitate the efficient production of cranberries. The potential impacts to hydrologic and geomorphic aspects of streamflow and channel structure have not been adequately assessed. In this study, the streamflow regime of 12 streams and the channel morphologies of 11 streams were compared for study sites in the Pinelands region of New Jersey with upstream active-cranberry bogs, upstream abandoned-cranberry bogs, and basins with no apparent agricultural history. Flow regime metrics included measures of low-flow, median-flow, and bankfull discharge, two measures of streamflow variability (spread and a modified Richards-Baker Flashiness index), and the frequency of overbank flooding. Stream-channel morphology metrics included average bank slope, average bankfull width, average bankfull depth, average bankfull width-to-depth ratio, and average bankfull area. No significant differences between stream types were apparent for any of the metrics. Basin-area normalized streamflow values of all 12 study sites were highly correlated to each other. Significant relationships existed between some of the flow-regime and channel-morphology metrics. Due to the lack of significant differences between stream types, it appears that neither historic nor current cranberry agricultural practices considerably influence flow regimes or the channel morphology of streams in the New Jersey Pinelands.  相似文献   

8.
Morley, Terry R., Andrew S. Reeve, and Aram J.K. Calhoun, 2011. The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/j.1752‐1688.2011.00519.x Abstract: Headwater wetlands, including hillside seeps, may contribute to downstream systems disproportionately to their relatively small size. We quantified the hydrology and chemistry of headwater wetlands in a central Maine, USA, catchment from 2003 to 2005 to determine their role in maintaining headwater streamflow and in affecting stream chemistry. A few of these headwater wetlands, commonly referred to as “seeps,” were characterized by relatively high groundwater discharge. During summer base flow, seeps were the primary source of surface water to the stream, contributing between 40 and 80% of stream water. Comparisons of groundwater and surface water dominant ion chemistry revealed only slight differences at the bedrock interface; however, significant changes occurred at the shallow groundwater‐surface water interface where we found decreases in total and individual cation concentrations with decreasing depth. Seep outflows significantly increased total cation and calcium concentrations in streams. Outflows at two seeps produced relatively high nitrate concentrations (88 ± 15 and 93 ± 15 μg/l respectively), yet did not correspond to higher nitrate in stream water below seep outflows (2 ± 1 μg/l). We demonstrate that small wetlands (< 1,335 m2) can contribute to headwater stream processes by linking groundwater and surface‐water systems, increasing the duration and magnitude of stream discharge, and by affecting stream chemistry, particularly during periods of base flow.  相似文献   

9.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

10.
ABSTRACT: This paper focuses on the development and testing of a mathematical model of an emergency ground water supply operated principally during periods of low streamflow. The process of ground water withdrawal and recharge is simulated taking account of streamflow, water demand, evapotranspiration, natural and artificial recharge and increased evapotranspiration due to artificial recharge, ground water pumpage, and streamflow contribution to pumped water. The model determines whether natural recharge is possible in less time than the return period of drought and also whether artificial recharge is needed. By simulating operation over a long period of time, the model can examine different droughts of short and long duration and can test the operating rules for ground water storage development in an area. Submodels analyze the components of the operating process including ground water flow into the stream, seepage losses, stream portion of well discharge due to induced infiltration and recharge from rainfall or water spreading. The model has been tested for areas in the humid northeastern United States.  相似文献   

11.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

12.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

13.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   

14.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

15.
ABSTRACT: The value of using climate indices such as ENSO or PDO in water resources predictions is dependent on understanding the local relationship between these indices and streamflow over time. This study identifies long term seasonal and spatial variations in the strength of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) correlations with timing and magnitude of discharge in snowmelt streams in Oregon. ENSO is best correlated with variability in annual discharge, and PDO is best correlated with spring snowmelt timing and magnitude and timing of annual floods. Streams in the Cascades and Wallowa mountains show the strongest correlations, while the southernmost stream is not correlated with ENSO or PDO. ENSO correlations are weaker from 1920 to 1950 and vary significantly depending on whether Southern Oscillation Index (SOI) or Niño 3.4 is used. PDO correlations are strong from 1920 to 1950 and weak or insignificant other years. Although there are not consistent increasing or decreasing trends in annual discharge or spring snowmelt timing, there are significant increases in fractional winter runoff that are independent of precipitation, PDO, or ENSO and may indicate monotonic winter warming.  相似文献   

16.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

17.
Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature of non-regulated streams during extreme events. A stream temperature model was created by considering the gains and losses of thermal energy resulting from radiation, convection, conduction, evaporation and advection. A sensitivity analysis showed that out of 14 variables, shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had the greatest influence on stream temperature. These same three variables are highly influenced by land use. Individual component models were developed to predict how urbanization changes stream width and baseflow discharge. Using 3-D computer modeling, a model was also developed to illustrate the effects of altering the extent and composition of riparian vegetation on streams with different orientations. By modeling these three variables as a function of urbanization, the results became inputs into the stream temperature model. The critical urban stream temperature model (CrUSTe), an aggregation of these four models, allows the prediction of stream temperature change as a result of amount, type and location of urbanization within a watershed. It has the potential to become a valuable tool for environmental managers.  相似文献   

18.
Crockett, Kris, Jonathan B. Martin, Henri D. Grissino-Mayer, Evan R. Larson, and Thomas Mirti, 2010. Assessment of Tree Rings as a Hydrologic Record in a Humid Subtropical Environment. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00464.x Abstract: Information about long-term variability of streamflow is important to allocate water resources, but few historical records extend more than 75 years into the past, requiring proxy records to evaluate flow prior to that time. Flow proxies have been found in tree-ring widths in temperate regions, but have rarely been used in humid subtropical environments because the relationship between tree growth and climate was believed to be weakened by limited seasonality and stress on tree growth from drought conditions. Tree-ring residual chronologies from two forests sampled from northern Florida correlate well with historical annual discharge (r² values as high as 0.47) from 3 of 15 river-gauging stations that were used to compare with the tree-ring chronologies. The best correlations occur where streamflow has little contribution from spring discharge or continuous flow from lakes and wetlands. Streams lack correlations with the tree-ring residual chronologies (r² values as low as 0.0002) where springs and continuous discharge from lakes mute variations in their flow. Tree-ring chronologies appear to be useful for reconstruction of prehistorical variations of some streamflow in humid subtropical regions, but interpretations of the reconstructions must consider the local hydrologic conditions.  相似文献   

19.
Abstract: The authors develop a model framework that includes a set of hydrologic modules as a water resources management and planning tool for the upper Santa Cruz River near the Mexican border, Southern Arizona. The modules consist of: (1) stochastic generation of hourly precipitation scenarios that maintain the characteristics and variability of a 45‐year hourly precipitation record from a nearby rain gauge; (2) conceptual transformation of generated precipitation into daily streamflow using varied infiltration rates and estimates of the basin antecedent moisture conditions; and (3) surface‐water to ground‐water interaction for four downstream microbasins that accounts for alluvial ground‐water recharge, and ET and pumping losses. To maintain the large inter‐annual variability of streamflow as prevails in Southern Arizona, the model framework is constructed to produce three types of seasonal winter and summer categories of streamflow (i.e., wet, medium, or dry). Long‐term (i.e., 100 years) realizations (ensembles) are generated by the above described model framework that reflects two different regimes of inter annual variability. The first regime is that of the historic streamflow gauge record. The second regime is that of the tree ring reconstructed precipitation, which was derived for the study location. Generated flow ensembles for these two regimes are used to evaluate the risk that the regional four ground‐water microbasins decline below a preset storage threshold under different operational water utilization scenarios.  相似文献   

20.
The Contribution of Headwater Streams to Biodiversity in River Networks1   总被引:1,自引:0,他引:1  
Abstract: The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. We review the diversity of taxa dependent on headwaters. Exemplifying this diversity are three unmapped headwaters that support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities, in part because of the predictability of dry periods. The influence of headwaters on downstream systems emerges from their attributes that meet unique habitat requirements of residents and migrants by: offering a refuge from temperature and flow extremes, competitors, predators, and introduced species; serving as a source of colonists; providing spawning sites and rearing areas; being a rich source of food; and creating migration corridors throughout the landscape. Degradation and loss of headwaters and their connectivity to ecosystems downstream threaten the biological integrity of entire river networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号