首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1–20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.  相似文献   

2.
ABSTRACT: An agricultural nonpoint source polluted stream in northern Idaho was examined to determine seasonal and longitudinal patterns of periphyton chlorophyll α. Chlorophyll a was measured at eight sites along Lapwai Creek, a fifth order stream impacted by agricultural runoff containing nutrients and eroded soils. Seasonally, periphyton chlorophyll α was lowest in the spring (cumulative x?= 60.4 mg m?2) and highest in the summer (cumulative x?= 222 mg m?2). Winter concentrations were higher than expected (cumulative x?= 168.6 mg m?2). The headwaters, flowing through an open grassy meadow, had the lowest concentrations of the study (two-year x?= 49.7 mg m?2). Immediately below a small, eutrophic reservoir, periphyton chlorophyll α increased markedly (two-year x?= 155.8 mg m?2) and remained high through a deep canyon (two year x?= 135.5 mg m?2) and down to the mouth of the stream (two-year x?= 172.3 mg?2). Periphyton chlorophyll α in Lapwai Creek was at least two times greater than values reported in the literature for comparable, undisturbed Idaho streams. We suggest that increased nutrient concentrations via agricultural nonpoint source pollution and increased light penetration from the removal of large, woody riparian vegetation have resulted in high periphyton chlorophyll α along the continuum of Lapwai Creek.  相似文献   

3.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

4.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

5.
Historically, thermoelectric water withdrawal has been estimated by the Energy Information Administration (EIA) and the U.S. Geological Survey's (USGS) water‐use compilations. Recently, the USGS developed models for estimating withdrawal at thermoelectric plants to provide estimates independent from plant operator‐reported withdrawal data. This article compares three federal datasets of thermoelectric withdrawals for the United States in 2010: one based on the USGS water‐use compilation, another based on EIA data, and the third based on USGS model‐estimated data. The withdrawal data varied widely. Many plants had three different withdrawal values, and for approximately 54% of the plants the largest withdrawal value was twice the smallest, or larger. The causes of discrepancies among withdrawal estimates included definitional differences, definitional noise, and various nondefinitional causes. The uncertainty in national totals can be characterized by the range among the three datasets, from 5,640 m3/s (129 billion gallons per day [bgd]) to 6,954 m3/s (158 bgd), or by the aggregate difference between the smallest and largest values at each plant, from 4,014 m3/s (92 bgd) to 8,590 m3/s (196 bgd). When used to assess the accuracy of reported values, the USGS model estimates identify plants that need to be reviewed.  相似文献   

6.
Organic carbon bioreactors provide low-cost, passive treatment of a variety of environmental contaminants but can have undesirable side effects in some cases. This study examines the production of methyl mercury (MeHg) in a streambed bioreactor consisting of 40 m3 of wood chips and designed to treat nitrate (NO?) in an agricultural drainage ditch in southern Ontario (Avon site). The reactor provides 30 to 100% removal of NO?-N concentrations of 0.6 to 4.4 mg L(-1), but sulfate (SO?(2-)) reducing conditions develop when NO? removal is complete. Sulfate reducing conditions are known to stimulation the production of MeHg in natural wetlands. Over one seasonal cycle, effluent MeHg ranged from 0.01 to 0.76 ng L(-1) and total Hg ranged from 1.3 to 3.4 ng L(-1). During all sampling events when reducing conditions were only sufficient to promote NO?(-) reduction (or denitrification) ( = 5, late fall 2009, winter 2010), MeHg concentrations decreased in the reactor and it was a net sink for MeHg (mean flux of -5.1 μg m(-2) yr(-1)). During all sampling events when SO?(2-) reducing conditions were present ( = 6, early fall 2009, spring 2010), MeHg concentrations increased in the reactor and it was a strong source of MeHg to the stream (mean flux of 15.2 μg m(-2) yr(-1)). Total Hg was consistently removed in the reactor (10 of 11 sampling events) and was correlated to the total suspended sediment load ( r2 = 0.69), which was removed in the reactor by physical filtration. This study shows that organic carbon bioreactors can be a strong source of MeHg production when SO?(2-) reducing conditions develop; however, maintaining NO?-N concentrations > 0.5 mg L suppresses the production of MeHg.  相似文献   

7.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

8.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

9.
ABSTRACT: The lower reaches of the Arroyo Colorado have historically failed to meet their use under subsection 303(b) of the U.S. Clean Water Act due to fecal coliform bacteria and low dissolved oxygen (DO). Fish kills, especially at the tidal confluence at the Port of Harlingen, Texas, have been reported. Oxygen demand from sediment (SOD) for a river typically has two states‐diffusion limited SOD (SOD) and potential SOD (pSOD), expressed when sediment is resuspended through increased flow or other disturbances. The objective of this research was to measure SOD in the Arroyo Colorado River in situ, estimate pSOD ex situ, and evaluate the relationship between SOD and the depositional environment. We measured SOD and pSOD in the Arroyo Colorado River at up to eight sites over three sampling events. We identified the sample sites based on a modified Rosgen geomorphic index for streambed stabilization. Sites with high sediment deposition potential had high SOD. The average values of SOD between sites were 0.62 g/m2/day (standard deviation 0.38 g/m2/day) and ranged from 0.13 to 1.2 g/m2/day. Potential SOD values ranged from as low as 19.2 to as high as 2,779 g/m3 sediment/ day. Potential SOD can serve as an indicator of the possible impact of SOD from resuspended sediment in stream systems.  相似文献   

10.
In the relatively pristine ecosystem in Kejimkujik Park, Nova Scotia, methylmercury (MeHg) concentrations in loons, Gavia immer, are among the highest recorded anywhere in the world. This study investigated the influence of bedrock lithology on MeHg concentrations in wetlands. Twenty-five different wetland field sites were sampled over four different bedrock lithologies; Kejimkujik monzogranite, black sulfidic slate, gray slate, and greywacke. Soil samples were analyzed for ethylmercury (EtHg), MeHg, total Hg, acid-volatile sulfides (AVS), organic matter, and water content as well as the biological parameters, mercury methyltransferase (HgMT) activity, sulfate reduction rates, fatty acid methyl ester (FAME) composition, and acidity. Methylmercury concentrations in the wetlands were highly dependent (P < 0.08) on lithology with no significant difference between bogs, fens, and swamps. Methylmercury concentrations in wetland soils developed on Kejimkujik monzogranite averaged 900 ng kg(-1) compared with only 300 ng kg(-1) in wetland soils developed on black sulfidic slate. Fatty acid methyl ester composition was also lithologically dependent (P < 0.001) with biomarkers for Desulfobulbus spp. discriminating between sites containing high and low MeHg concentrations. Levels of MeHg in wetlands were predicted mainly (41% of the sum of squares) by HgMT activity that differed (P < 0.009) between wetlands, with activity in bogs almost three times that present in swamps. Wetland MeHg concentrations are highly dependent on the lithology on which they have developed for largely biological reasons.  相似文献   

11.
Environmental dispersion and transformation of mercury discharged from gold mining operations has been investigated in field and laboratory studies in order to provide better understanding of the degree of mercury (Hg) pollution and bioavailability in the Lake Victoria goldfields (LVGF) ecosystems. This paper reviews results already published elsewhere and presents additional data on Hg dynamics in the LVGF. Studies conducted at the Mugusu and Rwamagaza artisanal mines indicated different degrees of Hg contamination and dispersion in environmental matrices. Mercury concentration in contaminated river sediments near the Mugusu mine varied from 6.0 to 0.5 mg/kg on a dry weight basis. The highest Hg contamination levels (165-232 mg/kg) were associated with mine tailings at the Rwamagaza mine. Mercury concentrations in fish representing different dietary habits on the southwestern shore of Lake Victoria at the Nungwe Bay were very low (2-35 microg/kg) and thought to represent background levels. These and other results suggested that the use of Hg in gold extraction in the LVGF has not caused high Hg levels in lake fish. The study of Hg in lichens showed Parmelia lichen to be an effective bioindicator for atmospheric Hg contamination due to Hg emissions from gold-amalgam firing and purification operations. The Hg levels in the lichens around the Mugusu mine ranged from 3.1 to 0.1 microg/g; the highest levels were recorded in the lichens sampled close to gold-amalgam processing sites. The regional background level in the Parmelia lichen was 0.05-0.10 microg/g, with a mean level of 0.07 microg/g. Studies of Hg transformation in the mine tailings revealed unexpectedly high methylmercury (MeHg) levels in the tailings (629-710 ng/g), which indicated that oxidation and methylation of metallic Hg in the tailings occurred at significant levels under tropical conditions. Re-equilibration of the tailings with freshwater (FW) indicated the MeHg was firmly bound in the tailings and therefore very little MeHg was released to the water column (0.2-1.5 ng/L). The methylation of Hg in tropical loamy clay soil contaminated with HgCl(2) (5 mg Hg/kg) yielded MeHg concentrations of 11 and 14 ng/g when inundated with seawater and FW, respectively, for 4 weeks. Little MeHg was transferred from the soil to the equilibrated water (< or = 0.4 ng/L). Atmospheric exposure of the soil pre-inundated with FW resulted in net degradation of MeHg during the 1st week of exposure, followed by net production and accumulation of MeHg in the soil (up to 15.5 ng/g) during atmospheric desiccation. Mercury uptake by fish from the Hg(0)-contaminated aquatic sediment-tailings system in the aquarium experiment was found to be low, suggesting the low availability of MeHg for bioaccumulation in the system. These and other results provide useful insights into Hg transformation, mobility and bioavailability in tropical aquatic systems affected by Hg pollution from gold mining operations.  相似文献   

12.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

13.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

14.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

15.
ABSTRACT: The distribution of sediment physical characteristics, sediment phosphorus (P) pools, and laboratory‐based rates of P release from the sediments were used to identify regions and dosage for alum treatment in Wind Lake, Wisconsin. Using variations in sediment moisture content, we identified an erosional zone at depths < 1.4 m and an accumulation zone at depths > 2.6 m. Mean concentrations of porewater P, loosely‐bound P, iron‐ and aluminum‐bound P, and mean rates of P release from sediments under anoxic conditions were high in the accumulation zone compared to sediment P characteristics in the erosional zone, indicating focusing of readily mobilized sediment P pools from shallow regions and accumulation to deep regions. We determined that a future alum treatment for control of internal P loading would be most effective at depths > 2.6 in the accumulation zone. The mean rate of anoxic P release from sediments encountered in the accumulation zone (8.3 mg m‐2 d‐1) was used in conjunction with a summer anoxic period of 122 d, and a treatment area of 1.6 km2 to estimate an internal P load of 1,600 kg to be controlled. Our results suggest that an understanding of the distribution of sediment P pools and P fluxes in lakes provides a strategy for estimating alum dosage and application areas.  相似文献   

16.
Abstract: The Watershed Analysis Risk Management Framework watershed model was enhanced to simulate the transport and fate of mercury and to calculate the fish mercury concentrations (FMC) attained by fish through the food web. The model was applied to Western Lake Superior Basin of Minnesota, which has many peat lands and lakes. Topographic, land use, and soil data were used to set up the model. Meteorology and precipitation chemistry data from nearby monitoring stations were compiled to drive the model. Simulated flow and mercury concentrations for several stream stations were comparable to available data. The model was used to perform mercury total maximum daily load calculations for two contrasting drainage lakes (Wild Rice Lake and Whiteface Reservoir). The model results for wet deposition, dry deposition, evasion, watershed yield, and soil sequestration of mercury were comparable with available actual data. The model predicted lake ice cover from November to April and weak stratification in summer, typical of shallow lakes in cold regions. The simulated sulfate decrease and methylmercury increase near the lake bottom in late summer are caused by sulfate reduction and mercury methylation that occur in the surficial sediment. Simulated FMC were within the range of observed values and the R2 of correlation between the simulated and observed FMC was 0.77. Under the 1989‐2004 base condition, the average simulated FMC of four‐year‐old walleye was 0.31 μg/g for Whiteface Reservoir and 0.15 μg/g for Wild Rice Lake. The FMC criterion in Minnesota is 0.2 μg/g. Wild Rice Lake already meets this criterion without any load reduction. The model showed that a 65% reduction in atmospheric mercury deposition will not, by itself, allow Whiteface Reservoir to meet the criterion in 15 years. Additional best management practices will be needed to reduce 50% of the watershed input.  相似文献   

17.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

18.
ABSTRACT: Hydrological and geochemical spatial patterns and temporal trends were analyzed using U.S. Geological Survey (USGS) water quality data collected from 1975 to 1999 along the uppermost 600 km of the Rio Grande in Colorado and New Mexico. Data on discharge, specific conductivity (SC), total dissolved solids (TDS), pH, Ca2+, Na+, Mg2+, K+, HCO3?, SO42‐, Cl?, F?, and SiO2 came from six USGS stations ranging from the Colorado‐New Mexico border to below Albuquerque, New Mexico. Linear regression, Kendall's S, and Seasonal Kendall's S’ were used to detect trends, and ANOVA was used to analyze spatial differences between stations. Statistically significant increasing trends occurred in SC, TDS, Ca2+, Na+, Mg2+, K+, Cl?, and F?in the uppermost reaches, and significant decreasing trends of SC, TDS, Ca2+, Mg2+, K+, HCO3?, and SO42‐occurred at the lower stations around Albuquerque. Both fluoride concentrations and pH values increased at and below Albuquerque over the study period. Discharge data show an increasing trend across all stations. Spatially, data for dissolved substances show generally linear upstream to downstream increases in concentrations in the upper four stations, with several notable nonlinear increases at and below Albuquerque (SC, TDS, Na+, Cl?). Significant increases in pH appear at and below Albuquerque, relative to upstream stations, probably due to improved sewage treatment.  相似文献   

19.
ABSTRACT: Long term data on surface water quality can sometimes be assembled by combining data collected by different agencies at different times and assuming that between agency differences in data quality are insignificant. The objective of this paper was to assess the quality of riverine nitrate (NO3) concentrations in Illinois measured and reported by four agencies from 1967 to 1974 by comparing median values for similar sampling locations and periods. A total of 17 river reaches were identified for which two agencies reported NO3 concentrations during similar periods. Nonparametric comparison of median values and analysis of covariance with discharge as a covariant produced similar results. Nitrate concentrations reported by the U.S. Geological Survey (USGS) from 1967 to 1971 were not statistically (P > 0.05) different from values reported by the Illinois State Water Survey (ISWS) for two of three river reaches. Additionally, NO3 concentrations reported by USGS from 1972 to 1974 were not statistically different than concentrations reported by the Illinois Environmental Protection Agency (IEPA) for four of five river reaches. From 1969 to 1971, NO3 concentrations reported by the Illinois Department of Public Heath and the Illinois Environmental Protection Agency (IDPH/IEPA) were less than one‐fourth the magnitude of values reported by ISWS. The median NO3 concentrations measured by the Central Illinois Public Service (CIPS) were significantly greater than those measured by USGS and IDPH/IEPA in the three comparable sampling locations. The use of NO3 concentrations measured by CIPS and IDPH/IEPA prior to 1972 is not recommended.  相似文献   

20.
The Tahoe City Wetland Treatment System (TCWTS) was constructed in 1997 to treat stormwater runoff from 23 ha of commercial, highway, and residential land use in the Lake Tahoe Basin. This subalpine, constructed, surface flow wetland treatment system consists of two cells in series, with a design water surface area of about 0.6 ha. Water quality monitoring from October 2002 through September 2003 was conducted with autosamplers at the inflow and outflow sites during 24 sampling events, with a median duration of 53 hours, representing 42 percent of total inflow to this wetland during the year. Monitoring data indicate an improvement of 49 percent or greater in effluent concentrations of dissolved phosphorus, nitrate, orthophosphorus, and total suspended solids. On average, event mean concentrations of total phosphorus were reduced from a median 279 μg/l at the inflow to 94 μg/l at the outflow. Event mean concentrations of total nitrogen were reduced from a median 1,599 μg/l at the inflow to 810 μg/l at the outflow. Net nutrient retention for the sampling period was estimated at 3 g phosphorus (P)/m2/y and 13 g nitrogen (N)/m2/y. Almost 4,000 kg of suspended sediment was captured by this wetland system during the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号