首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Mapping stream channels and their geomorphic attributes is an important step in many watershed research and management projects. Often insufficient field data exist to map hydromorphologic attributes across entire drainage basins, necessitating the application of hydrologic modeling tools to digital elevation models (DEMs) via a geographic information system (GIS). In this article, we demonstrate methods for deriving synthetic stream networks via GIS across large and diverse basins using drainage‐enforced DEMs, along with techniques for estimating channel widths and gradient on the reach scale. The two‐step drainage enforcement method we used produced synthetic stream networks that displayed a high degree of positional accuracy relative to the input streams. The accuracies of our estimated channel parameters were assessed with field data, and predictions of bankfull width, wetted width and gradient were strongly correlated with measured values (r2 = 0.92, r2 = 0.95, r2 = 0.88, respectively). Classification accuracies of binned channel attributes were also high. Our methodology allows for the relatively rapid mapping of stream channels and associated morphological attributes across large geographic areas. Although initially developed to provide salmon recovery planners with important salmon habitat information, we suggest these methodologies are relevant to a variety of research and management questions.  相似文献   

2.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

3.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

4.
Channel roughness, often described by Manning's n, is used to represent the amount of resistance that flow encounters, and has direct implications on velocity and discharge. Ideally, n is calculated from a long‐term record of channel discharge and hydraulic geometry. In the absence of these data, a combination of photo references and a validated qualitative method is preferable to simply choosing n arbitrarily or from a table. The purpose of this study was to use United States Geological Survey (USGS) streamflow data to calculate roughness coefficients for streams in the mountains of North Carolina. Five USGS gage stations were selected for this study, representing drainage areas between 71.5 and 337 km2. Photo references of the study sites are presented. Measured discharges were combined with hydraulic geometry at a cross‐section to calculate roughness coefficients for flows of interest. At bankfull flow, n ranged between 0.039 and 0.064 for the five study sites. Roughness coefficients were not constant for all flows in a channel, and fluctuated over a large range. At all sites, roughness was highest during low‐flow conditions, then quickly decreased as flow increased, up to the bankfull elevation.  相似文献   

5.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   

6.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   

7.
Abstract: A stochastic, spatially explicit method for assessing the impact of land cover classification error on distributed hydrologic modeling is presented. One‐hundred land cover realizations were created by systematically altering the North American Landscape Characterization land cover data according to the dataset’s misclassification matrix. The matrix indicates the probability of errors of omission in land cover classes and is used to assess the uncertainty in hydrologic runoff simulation resulting from parameter estimation based on land cover. These land cover realizations were used in the GIS‐based Automated Geospatial Watershed Assessment tool in conjunction with topography and soils data to generate input to the physically‐based Kinematic Runoff and Erosion model. Uncertainties in modeled runoff volumes resulting from these land cover realizations were evaluated in the Upper San Pedro River basin for 40 watersheds ranging in size from 10 to 100 km2 under two rainfall events of differing magnitudes and intensities. Simulation results show that model sensitivity to classification error varies directly with respect to watershed scale, inversely to rainfall magnitude and are mitigated or magnified by landscape variability depending on landscape composition.  相似文献   

8.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

9.
Regional curves are empirical relationships that can help identify the bankfull stage in ungaged watersheds and aid in designing the riffle dimension in stream restoration projects. Bankfull regional curves were developed from gage stations with drainage areas less than 102 mi2 (264.2 km2) for the Alleghany Plateau/Valley and Ridge (AP/VR), Piedmont, and Coastal Plain regions of Maryland. The AP/VR regions were combined into one region for this project. These curves relate bankfull discharge, cross‐sectional area, width, and mean depth to drainage area within the same hydro‐physiographic region (region with similar rainfall/runoff relationship). The bankfull discharge curve for the Coastal Plain region was further subdivided into the Western Coastal Plain (WCP) and Eastern Coastal Plain (ECP) region due to differences in topography and runoff. Results show that the Maryland Piedmont yields the highest bankfull discharge rate per unit drainage area, followed by the AP/VR, WCP, and ECP. Likewise, the Coastal Plain and AP/VR streams have less bankfull cross‐sectional area per unit drainage area than the Piedmont. The average bankfull discharge return interval across the three hydro‐physiographic regions was 1.4 years. The Maryland regional curves were compared to other curves in the eastern United States. The average bankfull discharge return interval for the other studies ranged from 1.1 to 1.8 years.  相似文献   

10.
In mountains of the western United States, channel incision has drawn down the water table across thousands of square kilometers of meadow floodplain. Here climate change is resulting in earlier melt and reduced snowpack and water resource managers are responding by investing in meadow restoration to increase springtime storage and summer flows. The record‐setting California drought (2012–2015) provided an opportunity to evaluate this strategy under the warmer and drier conditions expected to impact mountain water supplies. In 2012, 0.1 km2 of meadow floodplain was reconnected by filling an incised channel through Indian Valley in the central Sierra Nevada Mountains of California. Despite sustained drought conditions after restoration, summer baseflow from the meadow increased 5–12 times. Before restoration, the total summer outflow from the meadow was 5% more than the total summer inflow. After restoration, total summer outflow from the meadow was between 35% and 95% more than total summer inflow. In the worst year of the drought (2015), when inflow to the meadow ceased for at least one month, summer baseflow was at least five times greater than before restoration. Groundwater levels also rose at four out of five sites near the stream channel. Filling the incised channel and reconnecting the meadow floodplain increased water availability and streamflow, despite unprecedented drought conditions.  相似文献   

11.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

12.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   

13.
Manning's equation is used widely to predict stream discharge (Q) from hydraulic variables when logistics constrain empirical measurements of in‐bank flow events. Uncertainty in Manning's roughness (nM) is the major source of error in natural channels, and sand‐bed streams pose difficulties because flow resistance is affected by flow‐dependent bed configuration. Our study was designed to develop and validate models for estimating Q from channel geometry easily derived from cross‐sectional surveys and available GIS data. A database was compiled consisting of 484 Q measurements from 75 sand‐bed streams in Alabama, Georgia, South Carolina, North Carolina (Southeastern Plains), and Florida (Southern Coastal Plain), with six New Zealand streams included to develop statistical models to predict Q from hydraulic variables. Model error characteristics were estimated with leave‐one‐site‐out jackknifing. Independent data of 317 Q measurements from 55 Southeastern Plains streams indicated the model (Q = AcRH0.6906S0.1216; where Ac is the channel area, RH is the hydraulic radius, and S is the bed slope) best predicted Q, based on Akaike's information criterion and root mean square error. Models also were developed from smaller Q range subsets to explore if subsets increased predictive ability, but error fit statistics suggested that these were not reasonable alternatives to the above equation. Thus, we recommend the above equation for predicting in‐bank Q of unbraided, sandy streams of the Southeastern Plains.  相似文献   

14.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

15.
River channel migration and cutoff events within large river riparian corridors create heterogeneous and biologically diverse landscapes. However, channel stabilization (riprap and levees) impede the formation and maintenance of riparian areas. These impacts can be mitigated by setting channel constraints away from the channel. Using a meander migration model to measure land affected, we examined the relationship between setback distance and riparian and off-channel aquatic habitat formation on a 28-km reach of the Sacramento River, California, USA. We simulated 100 years of channel migration and cutoff events using 11 setback scenarios: 1 with existing riprap and 10 assuming setback constraints from about 0.5 to 4 bankfull channel widths (bankfull width: 235 m) from the channel. The percentage of land reworked by the river in 100 years relative to current (riprap) conditions ranged from 172% for the 100-m constraint setback scenario to 790% for the 800-m scenario. Three basic patterns occur as the setback distance increases due to different migration and cutoff dynamics: complete restriction of cutoffs, partial restriction of cutoffs, and no restriction of cutoffs. Complete cutoff restriction occurred at distances less than about one bankfull channel width (235 m), and no cutoff restriction occurred at distances greater than about three bankfull widths (∼700 m). Managing for point bars alone allows the setbacks to be narrower than managing for cutoffs and aquatic habitat. Results suggest that site-specific “restriction of cutoff” thresholds can be identified to optimize habitat benefits versus cost of acquired land along rivers affected by migration processes.  相似文献   

16.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

17.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

18.
Removal of nonnative riparian trees is accelerating to conserve water and improve habitat for native species. Widespread control of dominant species, however, can lead to unintended erosion. Helicopter herbicide application in 2003 along a 12-km reach of the Rio Puerco, New Mexico, eliminated the target invasive species saltcedar (Tamarix spp.), which dominated the floodplain, as well as the native species sandbar willow (Salix exigua Nuttall), which occurred as a fringe along the channel. Herbicide application initiated a natural experiment testing the importance of riparian vegetation for bank stability along this data-rich river. A flood three years later eroded about 680,000 m3 of sediment, increasing mean channel width of the sprayed reach by 84%. Erosion upstream and downstream from the sprayed reach during this flood was inconsequential. Sand eroded from channel banks was transported an average of 5 km downstream and deposited on the floodplain and channel bed. Although vegetation was killed across the floodplain in the sprayed reach, erosion was almost entirely confined to the channel banks. The absence of dense, flexible woody stems on the banks reduced drag on the flow, leading to high shear stress at the toe of the banks, fluvial erosion, bank undercutting, and mass failure. The potential for increased erosion must be included in consideration of phreatophyte control projects.  相似文献   

19.
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

20.
Anning, David W., 2011. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(5):1087‐1109. DOI: 10.1111/j.1752‐1688.2011.00579.x Abstract: Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area‐normalized reach‐catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human‐related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved‐solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved‐solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil‐pore or sediment‐pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila‐Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号