首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   

2.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

3.
Woznicki, Sean A. and A. Pouyan Nejadhashemi, 2011. Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios. Journal of the American Water Resources Association (JAWRA) 48(1): 90‐112. DOI: 10.1111/j.1752‐1688.2011.00598.x Abstract: Understanding the sensitivity of best management practices (BMPs) implementation as climate changes will be important for water resources management. The objective of this study was to determine how the sensitivity of BMPs performance vary due to changes in precipitation, temperature, and CO2 using the Soil and Water Assessment Tool. Sediment, total nitrogen, and total phosphorus loads on an annual and monthly basis were estimated before and after implementation of eight agricultural BMPs for different climate scenarios. Downscaled climate change data were obtained from the National Center for Atmospheric Research Community Climate System Model for the Tuttle Creek Lake watershed in Kansas and Nebraska. Using a relative sensitivity index, native grass, grazing management, and filter strips were determined to be the most sensitive for all climate change scenarios, whereas porous gully plugs, no‐tillage, and conservation tillage were the least sensitive on an annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies largely on a seasonal basis for all climate change scenarios. The results of this research suggest that the majority of agricultural BMPs tested in this study are significantly sensitive to climate change. Therefore, caution should be exercised in the decision‐making processes.  相似文献   

4.
The overall influence of urbanization on how flows of different frequency might change over time, while important in hydrologic design, remains imprecisely known. In this study, we investigate the effects of urbanization on flow duration curves (FDCs) and flow variability through a case study of eight watersheds that underwent different amounts of growth, in the Puget Sound region in Western Washington State, United States. We computed annual FDCs from flow records spanning 1960‐2010 and, after accounting for the effects of precipitation, we conducted statistical trend analyses on flow metrics to quantify how key FDC percentiles changed with time in response to urbanization. In the urban watersheds, the entire FDC tended to increase in magnitude of flow, especially the 95th‐99th percentile of the daily mean flow series, which increased by an average of 43%. Stream flashiness in urban watersheds was found to increase by an average of 70%. The increases in FDC magnitude and flashiness in urbanizing watersheds are most likely a result of increasing watershed imperviousness and altered hydrologic routing. Rural watersheds were found to have decreasing FDC magnitude over the same time period, which is possibly due to anthropogenic extractions of groundwater, and increasing stream flashiness, which is likely a result of reductions in base flow and increasing precipitation intensity and variability.  相似文献   

5.
Stream temperature changes as a result of forest practices have been a concern in the Pacific Northwest for several decades. As a result of this concern, stream protection requirements for forest lands were first adopted in the early 1970s and have become progressively more stringent. While there have been multiple studies examining the effects of stream protection buffers on water temperature, there are few studies examining temperature patterns over long periods on intensively managed forests. Water temperature in the upper Deschutes River watershed, Washington has been monitored since 1975 and represents one of the longest studies of water quality on managed forests in the Pacific Northwest. This data record, collected from basins of varying sizes, has enabled us to examine the combined effects of hydro‐climatic patterns and forest management on stream temperature. Effects of harvest conducted prior to buffer regulations were clearly identifiable and most pronounced on smaller streams. We were not able to detect any response on larger channels to more recent timber harvest where riparian buffers were required. This analysis also emphasizes that it is critical to account for changing climate when examining long‐term temperature patterns. We found that in many cases the temperature improvements associated with more stringent buffer requirements implemented over the last 35 years in the Deschutes watershed have been offset by warming climatic conditions.  相似文献   

6.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   

7.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

8.
Freshwater mussels (order Unionida) are a highly imperiled group of organisms that are at risk from rising stream temperatures (T). There is a need to understand the potential effects of land use (LU) and climate change (CC) on stream T and have a measure of uncertainty. We used available downscaled climate projections and LU change simulations to simulate the potential effects on average daily stream T from 2020 to 2060. Monte Carlo simulations were run, and a novel technique to analyze results was used to assess changes in hydrologic and stream T response. Simulations of daily mean T were used as input to our stochastic hourly T model. CC effects were on average two orders of magnitude greater than LU impacts on mean daily stream T. LU change affected stream T primarily in headwater streams, on average up to 2.1°C over short durations, and projected CC affected stream T, on average 2.1‐3.3°C by 2060. Daily mean flow and T ratios from Monte Carlo simulations indicated greater variance in the response of streamflow (up to 55%) to LU change than in the response of stream T (up to 9%), and greater variance in headwater stream segments compared to higher order stream segments for both streamflow and T response. Simulations indicated that combined effects of climate and LU change were not additive, suggesting a complex interaction and that forecasting long‐term stream T response requires simulating CC and LU change simultaneously.  相似文献   

9.
Dettinger, Michael, 2011. Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes. Journal of the American Water Resources Association (JAWRA) 47(3):514‐523. DOI: 10.1111/j.1752‐1688.2011.00546.x Abstract: Recent studies have documented the important role that “atmospheric rivers” (ARs) of concentrated near‐surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7‐model ensemble of historical‐climate and projected future climate simulations is evaluated. Under an A2 greenhouse‐gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher‐than‐historical water‐vapor transport rates increase, and AR storm‐temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood‐hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes.  相似文献   

10.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

11.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   

12.
Frey, Ashley E., Francisco Olivera, Jennifer L. Irish, Lauren M. Dunkin, James M. Kaihatu, Celso M. Ferreira, and Billy L. Edge, 2010. Potential Impact of Climate Change on Hurricane Flooding Inundation, Population Affected and Property Damages in Corpus Christi. Journal of the American Water Resources Association (JAWRA) 1–11. DOI: 10.1111/j.1752-1688.2010.00475.x Abstract: The effect of climate change on storm-surge flooding and the implications for population and structural damages on the city of Corpus Christi, Texas, was investigated. The study considered the influence of sea level rise and hurricane intensification, both influenced by climate change. Combinations of future carbon dioxide equivalent emission rates and carbon dioxide doubling sensitivities, based on findings of the Intergovernmental Panel on Climate Change, were considered to define future climate scenarios. A suite of physically based numerical models for hurricane winds and the resulting waves, surge, and morphological change at the coast were used to determine flooded areas, population affected, and property damages for Hurricanes Bret, Beulah, and a version of Carla shifted south from its original track, under present and predicted future climate conditions. A comparison of the economic damages for current climate conditions and for the 2080s climate scenario shows that, for Carla (shifted), there will be an increase in the range of $270-1,100 million; for Beulah, of $100-390 million; and, for Bret, of $30-280 million. A similar analysis was also conducted for 2030s predicted climate scenarios. Overall, the comparison of the results for the different climate conditions indicates what the destructive consequences of climate change could be, even within the somewhat short time frame of 80 years considered here.  相似文献   

13.
Abstract: This work develops a methodology to project the future precipitation in large river basins under limited data and climate change while preserving the historical temporal and spatial characteristics. The computationally simple and reliable conditional generation method (CGM) is presented and applied to generate reliable monthly precipitation data in the upper Blue Nile River Basin of Ethiopia where rain‐fed agriculture is prevalent. The results showed that the temporal analysis with the CGM performs better to reproduce the historical long‐term characteristics than other methods, and the spatial analysis with the CGM reproduced the historical spatial structure accurately. A 100‐year time series analysis using the outcomes of the six general circulation models showed that precipitation changes by the 2050s (2040 through 2069) can be ?7 to 28% with a mean increase of about 11%. The seasonal results showed increasing wet conditions in all seasons with changes of mean precipitation of 5, 47, and 6% for wet, dry, and mild seasons, respectively.  相似文献   

14.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

15.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

16.
Mehta, Vikram M., Norman J. Rosenberg, and Katherin Mendoza, 2011. Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin. Journal of the American Water Resources Association (JAWRA) 47(1):126‐135. DOI: 10.1111/j.1752‐1688.2010.00496.x Abstract: The Missouri River Basin (MRB) is the largest river basin in the United States (U.S.), and is one of the most important crop and livestock‐producing regions in the world. In a previous study of associations between decadal climate variability (DCV) phenomena and hydro‐meteorological (HM) variability in the MRB, it was found that positive and negative phases of the Pacific Decadal Oscillation (PDO), the tropical Atlantic sea‐surface temperature gradient variability (TAG), and the west Pacific warm pool (WPWP) temperature variability were significantly associated with decadal variability in precipitation and 2‐meter air temperature in the MRB, with combinations of various phases of these DCV phenomena associated with drought, flood, or neutral HM conditions. Here, we report on a methodology developed and applied to assess whether the aforementioned DCVs directly affect the hydrology of the MRB. The Hydrologic Unit Model of the U.S. (HUMUS) was used to simulate water yields in response to realistic values of the PDO, TAG, and WPWP at 75 widely distributed, eight‐digit hydrologic unit areas within the MRB. HUMUS driven by HM anomalies in both the positive and negative phases of the PDO and TAG resulted in major impacts on water yields, as much as ±20% of average water yield in some locations. Impacts of the WPWP were smaller. The combined and cumulative effects of these DCV phenomena on the MRB HM and water availability can be dramatic with important consequences for the MRB.  相似文献   

17.
Anticipated future increases in air temperature and regionally variable changes in precipitation will have direct and cascading effects on United States (U.S.) water quality. In this paper, and a companion paper by Coffey et al., we review technical literature addressing the responses of different water quality attributes to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk to inform management responses, and to identify research needs to fill gaps in our understanding. Here we focus on potential changes in streamflow, water temperature, and salt water intrusion (SWI). Projected changes in the volume and timing of streamflow vary regionally, with general increases in northern and eastern regions of the U.S., and decreases in the southern Plains, interior Southwest, and parts of the Southeast. Water temperatures have increased throughout the U.S. and are expected to continue to increase in the future, with the greatest changes in locations where high summer air temperatures occur together with low streamflow volumes. In coastal areas, especially the mid‐Atlantic and Gulf coasts, SWI to rivers and aquifers could be exacerbated by sea level rise, storm surges, and altered freshwater runoff. Management responses for reducing risks to water quality should consider strategies and practices robust to a range of potential future conditions.  相似文献   

18.
Clilverd, Hannah M., Daniel M. White, Amy C. Tidwell, and Michael A. Rawlins, 2011. The Sensitivity of Northern Groundwater Recharge to Climate Change: A Case Study in Northwest Alaska. Journal of the American Water Resources Association (JAWRA) 47(6):1228–1240. DOI: 10.1111/j.1752‐1688.2011.00569.x Abstract: The potential impacts of climate change on northern groundwater supplies were examined at a fractured‐marble mountain aquifer near Nome, Alaska. Well water surface elevations (WSE) were monitored from 2004‐2009 and analyzed with local meteorological data. Future aquifer response was simulated with the Pan‐Arctic Water Balance Model (PWBM) using forcings (air temperature and precipitation) derived from fifth‐generation European Centre Hamburg Model (ECHAM5) global circulation model climate scenarios for extreme and modest increases in greenhouse gases. We observed changes in WSE due to the onset of spring snowmelt, low intensity and high intensity rainfall events, and aquifer head recession during the winter freeze period. Observed WSE and snow depth compared well with PWBM‐simulated groundwater recharge and snow storage. Using ECHAM5‐simulated increases in mean annual temperature of 4‐8°C by 2099, the PWBM predicted that by 2099 later freeze‐up and earlier snowmelt will decrease seasonal snow cover by one to two months. Annual evapotranspiration and precipitation are predicted to increase 27‐40% (55‐81 mm) and 33‐42% (81‐102 mm), respectively, with the proportion of snowfall in annual precipitation decreasing on average 9‐25% (p < 0.05). The amount of snowmelt is not predicted to change significantly by 2099; however, a decreasing trend is evident from 2060 in the extreme ECHAM5 greenhouse gas scenario. Increases in effective precipitation were predicted to be great enough to sustain sufficient groundwater recharge.  相似文献   

19.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   

20.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号