首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
含硫油品储罐腐蚀产物自燃及其防治理论研究   总被引:1,自引:0,他引:1  
含硫油品储罐内壁腐蚀产物(Fe2O3、Fe3O4、Fe(OH)3)与H2S反应生成硫化铁,硫化铁的氧化放热是引起储罐火灾的主要原因.实验模拟了油品储罐中硫化铁的生成,研究了在无氧条件下H2S气体与油品储罐内壁腐蚀产物的反应以及生成的硫化铁在自然环境下的氧化自燃性.结果表明,Fe2O3、Fe3O4、Fe(OH)3,以及它们的混合物经硫化后生成的硫化铁具有很高的自然氧化活性,在自然环境中,常温下能迅速和空气中的氧气反应并放出大量的热,热量积聚引起储罐火灾爆炸事故.在实验结论的基础上,提出了一些行之有效的安全防范措施.  相似文献   

2.
含硫油品储罐腐蚀产物FeS的氧化自燃是引起储罐火灾爆炸事故的主要原因。用同步热分析仪(STA)在30~900℃范围内对FeS进行热重热流分析,从物理吸附和化学反应的角度分析了不同粒径和不同升温速率FeS的自然氧化倾向性,计算了不同升温速率FeS的活化能。结果表明,FeS样品粒径越小,越容易发生氧化自燃反应;升温速率越大,FeS越不容易氧化。同时,不同升温速率条件下的FeS反应机制各不相同。从实验得出的动力学参数看出,FeS的氧化反应较复杂,而非简单的放热反应。  相似文献   

3.
为防止含硫原油储罐腐蚀产物发生二次氧化而引发火灾或爆炸事故,研究Fe粉硫化产物二次氧化的影响因素。试验以Fe粉为原料,与H2S反应制备Fe S;Fe S与空气接触一次氧化后密闭存放,设定不同的存放时间、温度以及控制不同的一次氧化程度,再分别进行二次氧化,考察这3个因素对二次氧化过程的影响。通过检测样品存放过程中单质S含量变化以及表征样品组成变化,来探究二次氧化过程的机理。结果表明:初次氧化反应生成的单质S能和剩余的Fe S反应生成自燃性更高的多硫化铁,存放时间、温度及一次氧化程度影响多硫化铁的生成量和活性;多硫化铁的含量和活性越高,二次氧化升温越剧烈,样品的自燃倾向性越强。  相似文献   

4.
为了解煤在中等温度(150~400℃)下氧化的特点,对贫煤和褐煤进行了系列恒温加热.重点考察在超过加热温度后煤的升温速率,以分析其氧化放热反应的特点.不同条件实验中,贫煤的升温速率曲线都在相同的一些温度点附近出现峰值;褐煤也有相同的规律.这表明在特定温度附近氧化反应加强是由煤自身的特性决定的.另一方面煤样的厚度越小、粒度越大都使得升温速率数值增大,说明厚度小、粒度大有利于氧气的输运,而导致氧化反应加快.  相似文献   

5.
环氧乙烷生产安全——热力学效应中的温度控制   总被引:1,自引:0,他引:1  
从化工热力学角度出发,讨论当前工业生产常用的氧气氧化法制环氧乙烷工艺中,乙烯氧化反应单元氧化反应器易发生"飞温",而导致火灾爆炸等重大事故的原因:主副反应均为放热反应;副反应为完全氧化反应,反应热为主反应的十几倍;温度升高将导致反应选择性下降,速率加快,系统进入"自热"状况,进而导致热失控,甚至引发火灾爆炸事故。进而提出温度控制是保证氧气氧化法制环氧乙烷生产安全的关键,并建议工业生产中采用改善反应器结构、改良催化剂、改进换热方式、加入抑制剂以及采用比热容更大的甲烷气致稳等控温措施。  相似文献   

6.
为揭示不同初始氧化温度下浸水长焰煤的氧化自燃特性,利用红外光谱和热分析实验手段以及MS数值模拟方法研究其氧化自燃规律,并采用线性拟合的方法阐述自由基变化特性。结合分子键能的变化,分析浸水条件下二次氧化的煤氧链式反应过程。研究结果表明:经过120 ℃预氧化后,浸水风干长焰煤的还原性官能团甲基、亚甲基、羟基均高于原煤,而羰基、羧基低于原煤;与原煤相比,浸水风干后的煤预氧化温度在120 ℃时最大升温速率最高(0.036 9 ℃/s),表现出更强的自燃倾向性;MS模拟优化得出煤中各官能团在预氧化120 ℃时键能变化较大,结合热分析实验,确立预氧化后浸水风干煤体氧化自燃特性机制。  相似文献   

7.
以活化能的观点研究煤炭自燃机理   总被引:7,自引:5,他引:7  
笔者对煤体的性质和结构进行了分析 ,简要地介绍了关于煤炭自燃机理的各种学说。目前有许多学者用不同的方法来研究煤炭的自燃机理 ,笔者从煤活化能的角度来研究煤炭的自燃。由氧化反应方程提出了活化能 ,根据活化分子运动理论解释了活化能的基本概念 ;并建立了相应的煤氧化反应的活化能方程 ,该方程直线部分的斜率 (E/R)可求出氧化反应的活化能。在煤炭自燃进程中 ,随着煤体温度的升高 ,活化能降低 ,氧化反应加速 ,大量的热量产生 ,如此循环 ,最终导致了煤的燃烧。  相似文献   

8.
采用反应量热仪(RC1e)、差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对环己酮过氧化反应过程的热失控危险性进行了研究,利用冷却失效情形法对该工艺进行危险性分级。结果表明:温度的升高使环己酮过氧化反应速率加快,体系比热容增加,温度升高也使产物各种中间体及副反应活跃程度增加,提高搅拌速度也能促进环己酮氧化,而延长加料时间可以将反应热量较好地移出,但同时降低反应速率,使过氧化环己酮得率降低。依据风险评价指数矩阵法和失控情景分析法,得到环己酮半间歇过氧化反应的热失控危险程度级别为5级,而降低环己酮的加入量,危险程度等级为2级。  相似文献   

9.
为了掌握自燃性低的FeS的氧化自燃过程,为预防FeS自燃事故的发生提供理论基础,对不同纯度化学试剂FeS,利用定温、程序升温试验方法,结合XRD、TG-DTA、TG-DSC及化学分析的结果,研究其氧化反应历程.结果表明,不同纯度FeS氧化时,试样都经历了先失重后增重再失重的变化过程.首先失重的是试样中易挥发的杂质,250~300℃时试样质量开始增加,意味着FeS氧化反应的开始.在325~400℃范围内FeS氧化反应复杂,涉及化学反应多,试样质量随试验时间延长而增加,直至恒重,增重的主要物质经XRD表征和化学分析为FeSO4.试验温度达到480℃时,试样质量先增加后减小,增重的主要物质为Fe2(SO4)3,该温度下Fe2(SO4)3分解速率慢.在550~650℃内,Fe2(SO4)3热分解或FeS的完全氧化反应引起试样质量迅速减小.试验温度高于660℃时FeS发生完全氧化反应,最终产物为Fe2O3.具有不同氧化反应活性的FeS,其氧化反应历程也不同.  相似文献   

10.
元素硫高温腐蚀产物氧化自燃性影响因素的研究   总被引:1,自引:1,他引:0  
用差热-热重分析仪考察元素硫与Fe(OH)3发生硫化腐蚀反应的初始温度,分析硫化温度、硫化时间、氧化温度和水对高温硫腐蚀产物氧化自燃性的影响。结果表明:元素硫与Fe(OH)3发生硫化反应的初始温度为287.67℃;硫化温度越高,硫化时间越长,元素硫高温硫化腐蚀产物中FeS2的含量越高,氧化自燃性越大;氧化温度对高温硫腐蚀产物的氧化自燃性有很大影响,室温时几乎不发生氧化反应,氧化温度超过95℃后,腐蚀产物的氧化反应速率大幅度提高,对炼油装置安全构成极大威胁;水对高温硫腐蚀产物的氧化自燃性起着重要作用,无水时,高温硫化产物基本不发生氧化反应,少量水存在即可极大影响高温硫腐蚀产物的氧化速率。  相似文献   

11.
采用五氟苄基溴对焦硫化铁在空气中氧化生成的还原性硫S2-、S2-2、S2-3、S8烷基化,对烷基化衍生物进行GC-MS表征,比较检测出的各种还原硫物质的生成量曲线与焦硫化铁的氧化放热曲线.结果表明,多聚硫中S2-2、S2-3是焦硫化铁氧化放热过程中的主要还原剂,其迅速生成与氧化是焦硫化铁氧化、放热并引发自燃的主因.根据生成的S2-n可以标识出焦硫化铁氧化及自燃的孕育程度,这有利于揭示硫铁化物氧化并引发自燃的深层原因.  相似文献   

12.
基于程序升温氧化法的硫化矿石自燃倾向性研究   总被引:6,自引:3,他引:3  
由于不同类型的硫化矿石氧化性不同,暴露在空气中的表面活性不同,其耗氧速率也不同。本文对几种硫化矿石矿样进行了程序升温氧化实验,获得了不同类型的硫化矿石矿样在氧化过程中的总吸氧量、自热起始温度与温度曲线。实验表明:硫化矿石氧化前期(矿样温度小于自热起始温度)氧化速度较慢,后期(矿样温度大于自热起始温度)氧化速度较快,说明当矿样温度加热到其自热起始温度以上时,矿样氧化放热量明显加大,加快了矿体的升温。  相似文献   

13.
为了系统研究环氧乙烷水溶液失控反应热动力学参数的变化规律,采用等温扫描量热仪C600和绝热量热仪VSP-2分别对环氧乙烷水溶液进行了量热试验研究,得到了纯环氧乙烷的热稳定性数据,以及不同质量分数环氧乙烷水溶液的起始放热温度、最高放热温度和压力、放热量、绝热温升及失控反应过程的温度、压力变化等。结果表明,纯环氧乙烷发生失控反应的起始温度接近360℃,其放热量高达2 600 k J/kg。水加入环氧乙烷能够显著降低体系的起始放热温度至200℃以下。随环氧乙烷水溶液质量分数升高,失控反应致灾后果的严重程度明显提高。最高温度和压力、温升和压升速率、放热量及绝热温升随环氧乙烷质量分数升高而增大,而达到最大反应速率的时间减小。  相似文献   

14.
亚硫酸铵氧化是铵法脱硫的一个重要步骤,针对工程上主要采用的空气氧化方法,开展了在空气氧化条件下亚硫酸铵浓度对亚硫酸铵氧化速率的影响规律研究。试验采用空气鼓泡氧化反应器,在控制空气流量和反应温度不变的条件下,研究了亚硫酸铵氧化速率随亚硫酸铵浓度的变化关系。结果表明:在中、高浓度范围(0.1 mol/L)内,氧化速率受浓度影响不大,可认为无变化,在此过程中空气曝气流量是氧化反应的主要控制因素;在较低浓度范围(0.01~0.1 mol/L)内,氧化速率与浓度为斜率较小的线性关系;而在极低浓度(0.01 mol/L)下,氧化速率与浓度为斜率较大的线性关系,即当浓度低于0.1 mol/L时,亚硫酸铵氧化反应速率明显受亚硫酸铵浓度的影响。  相似文献   

15.
为了研究不同变质程度煤在低温氧化自燃过程中的特性,以及煤样变质程度对煤自燃过程的影响,利用程序升温试验系统研究了不同变质程度煤在低温氧化阶段气体与特征温度变化规律。通过计算其耗氧速率、放热强度,分析了耗氧速率、放热强度与温度之间的对应关系。同时分析了煤样变质程度对CO、CO2气体及耗氧速率、放热强度的影响规律。根据程序升温的试验条件和阿伦尼乌斯公式建立了CO与温度的计算模型,分析了该方程的线性回归直线斜率,计算了不同变质程度煤低温氧化活化能,分析并印证了煤样变质程度与活化能之间的关系。根据不同煤质工业分析指标试验结果,进一步阐述了各煤种主要煤质工业分析指标的差别,分析了主要指标与煤程序升温试验自燃氧化参数的相关性,同时分析了主要工业分析指标对各特征参数的影响。结果表明:煤在低温氧化自燃过程所产出的CO和CO2气体释放量、耗氧速率及放热强度均随温度升高而呈指数级增长;随煤样变质程度增加,CO和CO2气体、耗氧速率、放热强度变化较小;煤的变质程度越高,特征温度和活化能越大;煤样自燃的可能性越小,危险性越小;结合煤样工业分析与活化能发现,水分、灰分、挥发分含量与活化能呈负相关。  相似文献   

16.
为了研究林南仓矿煤的低温氧化的动力学特性,选取来自不同煤层和采区的3个煤样为实验煤样。通过工业分析和元素分析确定了煤的种类为中高挥发分烟煤,自燃等级为Ⅱ类自燃。分析热重实验结果将低温氧化过程分为失重阶段和增重阶段,确定两阶段为一级化学反应,随着反应深入氧化所需的能量增加。升温氧化实验过程中气体的质量浓度和种类随温度升高而增加,利用电子自旋共振波谱仪研究不同氧化温度下煤中自由基的数量,结果显示自由基浓度出现先减小后增加的趋势。从宏观和微观两个角度提出随着反应程度的加深反应所需能量以及气体产物和自由基数量之间的关系,进一步揭示煤自燃的发展进程。  相似文献   

17.
为了研究不同自燃倾向性煤自燃特性变化规律,利用煤氧化动力学测定系统,测试了三种不同自燃性煤的氧化特征。结果表明:(1)单一气体生成量、耗氧量及耗氧速率均随着煤自燃性的增强而增大,且CO生成量和耗氧速率急剧上升的拐点温度与出现C_2H_4气体的温度相同。(2)CO、CO_2和C_2H_4产生率具有明显的阶段性,且前两种气体最大产生率所对应的温度相同;当不同自燃性煤的温度超过80℃时,两组指标CO/ΔO_2和CO/CO_2均迅速增大,表明其氧化反应加快。(3)在TG-DSC试验中,煤的氧化燃烧过程可分为5个阶段,对应于4种特征温度。其中过渡稳定阶段指煤的质量保持稳定,是失重到增重的过渡态,且不同自燃性煤每个阶段持续时间及阶段性特征温度存在显著差异。  相似文献   

18.
以不同煤种的煤样为研究对象,对其进行程序升温氧化实验,采集不同温度时煤样所产生的气体,进行气相色谱分析,研究不同煤样升温氧化过程中产生的气体种类以及气体浓度的变化特征。实验结果表明:不同煤样升温氧化过程中产生的气体种类不同,气体产生先后顺序依次是CO、C2H6、C2H4、C3H8,气体产生量与温度都近似呈指数变化关系;随煤变质程度的增高,煤样气体产生率急剧上升的拐点温度也变高,煤样氧化能力降低,相同时间段内煤样产生气体量却减少。  相似文献   

19.
碳元素脱离煤体转移到气态产物中是煤低温氧化过程的一个重要特征.通过对煤自燃气体产物生成特征的研究,提出失碳速率的概念,建立了相应的氧化动力学模型,并从理论及实验两方面予以验证.该模型可较准确地描述煤在程序升温条件下从常温氧化至110℃的过程中失碳速率的变化特征.研究表明,自燃倾向性不同的煤其失碳速率有较大的差异,同一种煤在不同温度段内失碳速率也不同,其活化能和总指前因子均有较大改变;不同温度阶段煤氧化的内在作用机制存在较大差别,仅以某一温度段的特性来衡量煤氧化能力的强弱并不全面.  相似文献   

20.
朱豪  牛会永  李芳  李石林 《安全》2018,39(2):17-19
通过调研国内外文献,分析和总结了煤二次氧化特性的宏观和微观实验研究现状及防灭火技术现状,从气体浓度、耗氧速率、特征温度、放热强度、官能团等方面综合论述了遗煤二次氧化的自燃特性及变化规律,指出了遗煤二次氧化的研究方法和遗煤自燃防治措施的新发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号